L :

|
JUNE 18-22, 2023 ' By

CVPR 2023 Tutorial on CVPR

VANCOUVER CANADX

Neural Search in Action

Yusuke Matsui Martin Aumdiller Han Xiao
The University of Tokyo IT University of Copenhagen Jina Al

vqtbliq_u8 >$’/

1
TSIMD

Result:

Yusuke Matsui ‘s#sx*

Lecturer (Assistant Professor), the University of Tokyo, Japan

Handle as a 256-bit SIMD register: uint8x16x2_t

€9 http://yusukematsui.me

v’ Image retrieval

W @utokyo bunny) @matsui528

v’ Large-scale indexing

kq

ks

A&

ki

ki7 Kig Kio

k32

13

3

1

8

1

15| 7

2

Teimpl1] Téiupl2] Téimpl3] Témp[16] - Témpl1] Téupl2] Téumpl3] Téimp[16]
1321 3 | 11 8 42 | 73 | 202 103

Tmplk1] Téwplka] Tdmplksl Ténlk16] * ° Tamplkaz) Téwplkis] Téimplkio] Téinl¥s2]
64 | 11 | 132 57 42 | 87 5 73

ARM 4-bit PQ

l X vqtbliq_us

2
TS[MD

[Matsui+, ICASSP 22]

2020 Tutorial on

Im»age Retrieval in the Wild

- 941 AM $100%: 1
* 3 | < searchbyimage
For Sale i
9 Lo
I)
5
150 1

Image Retrieval in the Wild
[Matsui+, CVPR 20, tutorial]

Martin Aumuller

Associate Professor, IT University of Copenhagen, Denmark
€ http://itu.dk/people/maau O @maumueller

v/ Similarity search using hashing
v/ Benchmarking & workload generation

Proceedings of Machine Learning Research 176:177-189, 2022 NeurIPS 2021 Competition and Demonstration Track

Hashing Filtering Accumulation
decrease prefix length by one Check termination criterion Results of the NeurIPS’21 Challenge on Billion-Scale
Approximate Nearest Neighbor Search
v PP g
length-i prefix 1 W -

«hy [T1]] a Harsha Vardhan Simhadri® HARSHASI@MICROSOFT.COM
retrieve all w |s - ot 2 WL TAMSE@IERE :
ndidates S1 (pl) l(pn) dist(s'(p), s'(q)) < ©? . George Wllh?ms . GWILLIAMS U.ll?.l.]_.OR(,

v hy [[I] i Martin Aumiiller MAAU@ITU.DK

length-i prefix _ _ = Matthijs Douze? MATTHIJIS@FB.COM
! 1 . . Artem Babenko® ARTEM.BABENKOQPHYSTECH.EDU
: insert into buffer g Dami B huk® P,)
SM(pl) . |Sym (pn) compute distance 5 mitry Baranchu DBARANCHUK@YANDEX-TEAM.RU
“n [11]] (1] Qi Chen! CHEQIG@MICROSOFT.COM
length-i prefix L] EUC{:IShHOEZeirII(i‘l' . . LUCAS. HOSSEINIGGMAIL.COM
avishankar Krishnaswamy RAKRI@MICROSOFT.COM
update.top-k if buffer is ful Gopal Srinivasal GOPALSR@MICROSOFT.COM
deduplicate Suhas Jayaram Subramanya® SUHASJ@ACS.CMU.EDU
‘ P ‘ ‘ P Jingdong Wang” WANGJINGDONG@BAIDU.COM
1 n

! Microsoft Research ? GSI Technology ® IT University of Copenhagen

PUFFINN
[Aumdller+, ESA 2019]

4 Meta AT Research 3 Yandex 6 (larnesie Meallon TTniversitvy 7 Raidn

Billion-Scale ANN Challenge
[Aumiiller+, NeurIPS 21, Competition] >

Han Xiao

Founder & CEO of Jina Al
€9 https://jina.ai W @hxiao

v/ Multimodal search & generation
v/ Model tuning & serving; prompt tuning
& serving

w

[£) pocarray Embed images and

Build multimodal Al : .
s g i The data structure for = sentences into fixed-
PP - miditimodal dota |) y. length vectors with

loud)
: CLIP
All the power of cross-modal and multi-modal ProFess, embed‘ reco@mend, store qnd transfer d?to’ ‘
laying a solid foundation for any multimodal Al project. Easy, low-latency and highly scalable service that can
9

applications in the cloud, without the infrastructure
complexity. Jina makes advanced solution engineerint easily be integrated into new and existing solutions.
and cloud-native technologies accessible to every -

developer. /)
") stars | 2.3k (Docs)
- Ll (O sars 117K
Q Stars | 18.5K | Docs)

Example: Multimodal Search

Images

“Two dogs
playing 1in
the snow”

S .-

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

Example: LLM + embedding

"Who won curling gold at
the 2022 Winter Olympics?”

+ “Niklas Edin,
Eriksson, ..”

“Chinami Yoshida¥n¥n==Personal..”

g P
¥7 4 “Lviv bid for the 2022 Winter..”
W :
8 0 % €“2022 Olympics medal winners..”
24 1¢/
e

- “Damir Sharipzyanov¥n¥n=Career..”

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

Oskar

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

Target audiences

» Those who want to try Neural Search

» Those who have tried Neural Search but would like to
know more about the algorithm in depth

Our talk

» Million-scale search (Yusuke)
» Billion-scale search (Martin)
» Query language (Han)

Schedule

13:30-13:40 Opening Yusuke Matsui
13:40-14:30 Theory and Applications of Graph-based Search Yusuke Matsui

14:30—-15:20 A Survey on Approximate Nearest Neighborsina Martin Aumuller
Billion-Scale Settings

15:20—-15:30 Break

15:30-16:20 Query Language for Neural Search in Practical Han Xiao
Applications

Aimmmnl ‘
VANCOUVER, CANADA

CVPR 2023 Tutorial on Neural Search in Action “C“Vﬁﬁ i |i§|§|'j"lf

Theory and Applications of
Graph-based Search

Yusuke Matsui
The University of Tokyo

9 4

Yusuke Matsul @ # #ksxz

Lecturer (Assistant Professor), the University of Tokyo, Japan
€9 http://yusukematsui.me 9 @utokyo bunny O @matsui528

v Image retrieval
v’ Large-scale indexing

& 2020 Tutorial on
Handle as a 256-bit SIMD register: uint8x16x2_t |mage Re‘trleval |n ‘the Wlld
. o _
ky ky ks kig i k17 kg kyo Kz, '
13 3 1 8 1 15 7 2
* 3 | < searchbyimage
vqtbliq_us >$’/ l X vqtbliq_u8 p—
Teimpl1] Téiupl2] Téimpl3] Témp[16] - Témpl1] Téupl2] Téumpl3] Témpl16]) 2 g
Timpol1232] 3 |22]| .. | 8 || 42| 73 |202] .. |103||Tsmmp
Tmplk1] Téwplka] Tdmplksl Ténlk16] * ° Tamplkaz) Téwplkis] Téimplkio] Téinl¥s2]
Result: 64 | 11 |132] .. 57 42 | 87 5 73

ARM 4-bit PQ [Matsui+, ICASSP 22]

[Matsui+, CVPR 20, tutorial]

» Background
» Graph-based search
v’ Basic (construction and search)
v' Observation
v' Properties
» Representative works
v" HNSW, NSG, NGT, Vamana
» Discussion

» Background
» Graph-based search
v’ Basic (construction and search)
v' Observation
v' Properties
» Representative works
v" HNSW, NSG, NGT, Vamana
» Discussion

Nearest Neighbor Search; NN

_)
X1,X5,) XN
— _
x, € RP

>N D-dim database vectors: {x,, }N_;

Nearest Neighbor Search; NN

Result

0.23 ' '

3.15 — - L (325
@ argmin [lq - x,/13 | [>

0.65 X1,X2, 0, XN | ™ T2 N 0.72

-1'43- ~— — Often, argmax + inner product is also considered. -1 68—

q = RD xn = RD Don’t care in this talk. x74

>N D-dim database vectors: {x,}}_4
»Given a query ¢, find the closest vector from the database
»0ne of the fundamental problems in computer science

»Solution: linear scan, O(ND), slow ®

Approximate Nearest Neighbor Search; ANN

Result

0.23] I |

1 oy —— I R
argmin [lq — x, /15 | |3

0.65 X1, X2 s XN ne{1,2,..,N} 0.72

11.43. " A 11.68.

q € RP x, € RP X4

» Faster search
»Don’t necessarily have to be exact neighbors
» Trade off: runtime, accuracy, and memory-consumption

Approximate Nearest Neighbor Search; ANN

Result
0.23 < > 0.20]
515 argmin [|q — x, I3 jgy |32
0.65 X1, X2, s XN |™ nef1,2,...N) 0.72
11.43 N A 11.68.
q € RP x, € RP X74
> In this talk, suppose: N < 10°
> Faster search » All data can be loaded on memory

»Don’t necessarily have to be exact neighbors
» Trade off: runtime, accuracy, and memory-consumption

Real-world use cases 1: multimodal search

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

Real-world use cases 1: multimodal search

CLIP Image
Encoder

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

10

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

Real-world use cases 1 multimodal search

CLIP Image
Encoder

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

11

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

Real-world use cases 1. multi

i
haia s

¥ ;S

: - R

— g

CLIP Image
Encoder

A

X1,X2, ., XN

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

odal search

S

R

12

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

Real-world use cases 1. uItiodaI search

“Two dogs playing Y & R
in the snow” B e K, .] : -
S | i

— aen®

P IR

CLIP Text

Encoder CLIP Image

Encoder

4/

0.23]

3.15 2 F
065 xl'xZ' ""xN
11.43.

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash 13

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

Real-world use cases 1 multiodal search

% «
B35

£

PSR

“Two dogs playing < S
in the snow” | AV

CLIP Text

Encoder CLIP Image

Encoder

(0.23] /l Result
i A 0.20
3.15 ar m1n|| —x ”2 3.25
0.65 X1,X2, e, XN g q nil2 0.72
143 1.68.

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

Real-world use cases 1 multimodal search

7
SIEAEE R RN Mesa
)
[| £ 4
V 1L/T-A ’ o = $ ~ r
. .. 4 . 2 1e L p 1
{ |
\ d |
- ” .

e L

“Two dogs playing
in the snow”

Seran \3 :

CLIP Text

Encoder CLIP Image

Encoder
Result
0.23 /l '0.20°
L
315 ar mln” —x ”2 325
065 xl'xZ' ""xN g q nilz 0.72
11.43 11.68

» Encoder determines the upper bound of the accuracy of the system
» ANN determines a trade-off between accuracy, runtime, and memory

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash 15

https://github.com/haltakov/natural-language-image-search
https://unsplash.com/@damiangenton96?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@brucemars?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@dilson?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/@richardworks?utm_source=NaturalLanguageImageSearch&utm_medium=referral
https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral

Real-world use cases 2: LLM

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

16

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

Real-world use cases 2: LLM

"Who won curling “I'm sorry, but as an AI language

gold at the 2022 model, I don't have information

Winter Olympics?" about the future events.”
ChatGPT 3.5 @

(trained in 2021)

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

Real-world use cases 2: LLM + embedding

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

Real-world use cases 2: LLM + embedding

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

“Chinami Yoshida¥n¥n==Personal..”

“=™ o % “Lviv bid for the 2022 Winter.”

. “Damir Sharipzyanov¥n¥n=Career..”

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

Real-world use cases 2: LLM + embedding

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

“Chinami Yoshida¥n¥n==Personal..”

! TR X

J* « % “Lviv bid for the 2022 Winter.”
:_' 3 \‘ ,. .

ow o :

“Damir Sharipzyanov¥n¥n=Career..”

20

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

Real-world use cases 2: LLM + embedding

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

“Chinami Yoshida¥n¥n==Personal..”

(=« % “Lviv bid for the 2022 Winter..”

“Damir Sharipzyanov¥n¥n=Career..”

21

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

Real-world use cases 2: LLM + embedding

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
(trained in 2021)

“Chinami Yoshida¥n¥n==Personal..”

J* « % “Lviv bid for the 2022 Winter.”
3 \‘ [
4 Jf/ :

“Damir Sharipzyanov¥n¥n=Career..”

22

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

Real-world use cases 2: LLM + embedding

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5
Text (trained in 2021)

Encoder

(0.23]
3.15
0.65

11.43]

“Chinami Yoshida¥n¥n==Personal..”
@

“= & % “Lviv bid for the 2022 Winter..”
LB .

- .

“Damir Sharipzyanov¥n¥n=Career..”

23

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

Real-world use cases 2: LLM + embedding

"Who won curling
gold at the 2022
Winter Olympics?"

ChatGPT 3.5

Text (trained in 2021)
Encoder

Result
0.20]

3.25
0.72
11.68.

“List of 2022 Winter
Olympics medal winners..”

(0.23]
3.15
0.65

11.43]

argmin||q — x,|I3

“Chinami Yoshida¥n¥n==Personal..”
@

J* « % “Lviv bid for the 2022 Winter.”
g > !

T~

s
Tk, 1
. -‘7,/

“Damir Sharipzyanov¥n¥n=Career..”

24

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

Real-world use cases 2: LLM + embedding

“Who won curling gold at the
"Who won curling 2022 Winter Olympics?
gold at the 2022 Use the bellow articles: List of
Winter Olympics?" 2022 Winter Olympics medal
winners..”

ChatGPT 3.5
(trained in 2021)

Text

Encoder

Result
0.20]

3.25
0.72
11.68.

“List of 2022 Winter
Olympics medal winners..”

(0.23]
3.15
0.65

11.43]

argmin||q — x,|I3

“Chinami Yoshida¥n¥n==Personal..”

“=f . % “lLviv bid for the 2022 Winter..”

“Damir Sharipzyanov¥n¥n=Career..”

25

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

Real-world use cases 2: LLM + embedding

“Who won curling gold at the

"Who won curling 2022 Winter Olympics? “Niklas Edin. Oskar
gold at the 2022 BIsEI» Use the bellow articles: List of . ,,, @
Winter Olympics?" 2022 Winter Olympics medal Er1ksson,

winners..”

ChatGPT 3.5
(trained in 2021)

Text

Encoder

Result
0.20]

3.25
0.72
11.68.

“List of 2022 Winter
Olympics medal winners..”

(0.23]
3.15
0.65

11.43]

argmin||q — x,|I3

“Chinami Yoshida¥n¥n==Personal..”

J* « % “Lviv bid for the 2022 Winter.”
00

T~

s
Tk, 1
il

“Damir Sharipzyanov¥n¥n=Career..”

26

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

Real-world use cases 2: LLM + embedding

“Who won curling gold at the

"Who won curling 2022 Winter Olympics? “Niklas Edin. Oskar
gold at the 2022 BIsEI» Use the bellow articles: List of . ,,, @
Winter Olympics?" 2022 Winter Olympics medal Er1ksson,

winners..”

ChatGPT 3.5
Text (trained in 2021)

Encoder

Result
0.23 0.20
3.15 . - 2 3.25
0.65 argmln”q xn”Z 0.72
11.43. 1.68.

“List of 2022 Winter

“Chinami Yoshida¥n¥n==Personal..” Olympics medal winners..”

f w % “Lviv bid for the 2022 Winter.”
oo o

Embedding+ANN is the current easiest
way to provide knowledge to LLM

Texts are from: https://github.com/openai/openaicookbook/blob/main/examples/Question answering using embeddings.ipynb Icon credit: https://ja.wikipedia.org/wiki/ChatGPT

\@@g

Row
- #

1
NS U g

“Damir Sharipzyanov¥n¥n=Career..”

27

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT

277 °F
Vector DB??: &

Result

0.20

. 3.25

< argmln”q — xn“% 0.72

m A 1.68
‘ﬁ “List of 28

aXn-=Personal..” . ‘

https://github.com/openai/openaicookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://ja.wikipedia.org/wiki/ChatGPT
https://em-content.zobj.net/thumbs/120/twitter/322/thinking-face_1f914.png

Three levels of technology

Algorithm Library Service (e.g., vector DB)
» Scientific paper » Implementations of algorithms » Library + (handling metadata,
» Math » Usually, a search function only serving, scaling, 10, CRUD, etc)
» Often, by researchers » By researchers, developers, etc » Usually, by companies
Product Quantization + [Pinecone]
Inverted Index (PQ, IVFPQ)
[Jégou+, TPAMI 2011] [faiss]

[Qdrant]
Hierarchical Navigable [Milvus]
Small World (HNSW) NMSLIB [jina]

[Malkov+, TPAMI 2019]

h ib [Vald] Vertex Al
[ScaNN (4-bit PQ)] nswil Matching Engine

[Guo+, ICML 2020]
[ScaNN] [Weaviate]

Product Quantization +
Inverted Index (PQ, IVFPQ)
[Jégou+, TPAMI 2011]

Hierarchical Navigable
Small World (HNSW)
[Malkov+, TPAMI 2019]

One library may implement
multiple algorithms

@ “l benchmarked faiss”
© “l benchmarked PQ in faiss”

One algorithm may be
implemented in multiple libraries

Hierarchical Navigable
Small World (HNSW) NMSLIB
[Malkov+, TPAMI 2019]

Often, one library = one algorithm

ScaNN (4-bit PQ)

[Guo+, ICML 2020] \

One service may use some libraries

—\

Hierarchical Navigable
Small World (HNSW)
[Malkov+, TPAMI 2019]

... or re-implement

Milvus

algorithms from
scratch (e.g., by Go)

Algorithm

» Scientific paper

» Math

» Often, by researchers

Product Quantization +
Inverted Index (PQ, IVFPQ)
[Jégou+, TPAMI 2011]

Hierarchical Navigable

Small World (HNSW) This talk mainly focuses algorithms

[Malkov+, TPAMI 2019]

ScaNN (4-bit PQ)
[Guo+, ICML 2020]

— Inverted index + data compression

Space partition ; Data compression
L » k-means ; » Raw data
= » PQ/OPQ ! > Scalar quantization
O » Graph traversal l » PQ/OPQ
|
e > etc... I > etc...
< :
@) — Ll [[[[]
o I
— : — [[[]]
8 — [T 111
y. I -
|
~ For raw data: Acc. ©, Memory: ® =y , For compressed data: Acc. ®, Memory: ©
L Look-up-based .]
TS Locality Sensitive Hashing (LSH) 833 — Linear-scan by
) 0.68 » D: 123 Asymmetric Distance
é | lo71 : |
o Tree / Space Partitioning ,
- Hamming-based
'g g'gg j Linear-scan by
Graph traversal 0.68 » . Hamming distance
0.71)

— Inverted index + data compression

Space partition : Data compression
L > k-means : > Raw data
S » PQ/OPQ ! » Scalar quantization
O » Graph traversal I » PQ/OPQ
1
S > etc... | > etc...
c ‘ :
© mmm P— = 1
s B —>
— = . [T T 1]
0 — [[[[]
/ g' 1 .
y | I :
1

~ For raw data: Acc. ©, Memory: ® = ~ For compressed data: Acc. ®, Memory: ©

}

Look-up-based
0.34
» ID: 2
ID: 123

_ 0.22
0.68
| lo71)
Tree / Space Partitioning .
Hamming-based

Linear-scan by
Graph traversal Hamming distance

Locality Sensitive Hashing (LSH)

Linear-scan by
Asymmetric Distance

million-scale

Today’s my topic

— Inverted index + data compression

Space partition Data compression

|
|
L » k-means ; » Raw data
S » PQ/OPQ ! » Scalar quantization
O » Graph traversal I » PQ/OPQ
S > etc... : > etc...
c :
o 1 JBEEERER
= — CTLLL]
i
|
|

~ For raw data: Acc. ©, Memory: ® — ¢ For compressed data: Acf =i=ieh A4 i) A 1el 0l

Look-up-based tutorial at CVPR20
Locality Sensitive Hashing (LSH) 0.34 ———

0.22 ID: 2 Billion-scale Approximate

0.68 Nearest Neighbor Search

ID: 123

Yusuke Matsui
The University of Tokyo

0.71

Hamming-based 9 4

Tree / Space Partitioning

million-scale

Graph traversal

Today’s my topic

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search

billion-scale

million-scale

Space partition

> k-means

» PQ/OPQ

» Graph traversal
> etc...

~— Inverted index + data compression

Data compression

» Raw data
» Scalar quantization
» PQ/OPQ
> etc...

n
»

See Martin’s next
presentation!

~ For raw data: Acc. ©, Memory: ® =

Locality Sensitive Hashing (LSH)

Tree / Space Partitioning

Graph traversal

~ For compressed data: Ac

Look-up-based

0.34
0.22 ID: 2
0.68 ID: 123

0.71

Today’s my topic

Hamming-based

See my previous
tutorial at CVPR20

@VPRVIRTUAL

Billion-scale Approximate
Nearest Neighbor Search

Yusuke Matsui
The University of Tokyo

e 4

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search

» Background
» Graph-based search
v’ Basic (construction and search)
v' Observation
v' Properties
» Representative works
v" HNSW, NSG, NGT, Vamana
» Discussion

39

Graph search

» De facto standard if all data can be loaded on memory
» Fast and accurate for real-world data

» Important for billion-scale situation as well
v' Graph-search is a building block for billion-scale systems

Z » Traverse graph towards the query
» Seems intuitive, but not so much

easy to understand
» Review the algorithm carefully

entry point

Images are from [Malkov+, Information Systems, 2013]

Graph search

» De facto standard if all data can be loaded on memory
» Fast and accurate for real-world data

» Import
v Grar The purpose of this tutorial is to make

graph search not a black box

systems

Z » Traverse graph towards the query
» Seems intuitive, but not so much

easy to understand
o > Review the algorithm carefully

Images are from [Malkov+, Information Systems, 2013]

Construction Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NerulPS 2019]

Increment approach Refinement approach

» Add a new item to the current » lteratively refine an initial graph
graph incrementally

42

Construction Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NerulPS 2019]

Increment approach Refinement approach
» Add a new item to the current » lteratively refine an initial graph

graph incrementally

43

Construction: incremental approach Images are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector

44

Construction: incremental approach Images are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector

» Given a new database vector,
45

Construction: incremental approach Images are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector

»Given a new database vector, create new edges to neighbors
46

Construction: incremental approach Images are from [Malkov+, Information Systems, 2013]

Graph of

> Each node is a database vector

»Given a new database vector, create new edges to neighbors
47

ﬁﬁﬁﬁﬁ

Construction: incremental approazh
» Prune edges if some node have too many edges

» Several strategies (e.g., RNG-pruning)

Graph of L
xl,...,xgo (I
A

> Each node is a database vector

»Given a new database vector, create new edges to neighbors
48

Construction Images are from [Malkov+, Information Systems, 2013] and [Subramanya+, NerulPS 2019]

Increment approach Refinement approach
» Add a new item to the current » lteratively refine an initial graph

graph incrementally

49

Construction: refinement approach Images are from [Subramanya+, NerulPS 2019]

=

» Create an initial graph (e.g., random graph or approx. kNN graph)
» Refine it iteratively (pruning/adding edges)

50

Construction: refinement approach Images are from [Subramanya+, NerulPS 2019]

I
» Need to be moderately sparse (otherwise the
graph traverse is slow)

o

> Some

=» »

=» =»

» Create an initial graph (e.g., random graph or approx. kNN graph)
» Refine it iteratively (pruning/adding edges)

m Images are from [Malkov+, Information Systems, 2013]
Name each node for

explanation

Alanb ay1 01 aso|)

Candidates
(size = 3)

» Given a query vector

52

m Images are from [Malkov+, Information Systems, 2013]

@)

o)

(V)]

)

—t

o

—t

-

)

®)

-

D

<
Candidates
(size = 3)

entry point

» Given a query vector
» Start from an entry point (e.g.,@)

53

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

@ 23.1

Candidates
(size = 3)

entry point

» Given a query vector
> Start from an entry point (e.g.,@)). Record the distance to q.

54

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

@ 23.1

Candidates
(size = 3)

entry point

55

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|D

entry point

@ 23.1

Candidates
(size = 3)

56

m Images are from [Malkov+, Information Systems, 2013]

Alanb ay1 01 aso|)

@ 23.1

Candidates
(size = 3)

entry point

\

H
> Pick up the unchecked best candidate ()

57

m Images are from [Malkov+, Information Systems, 2013]

Alanb ay1 01 aso|)

D 231

Candidates
(size = 3)

er check!
N

M,
H @
» Pick up the unchecked best candidate (@). Check it.

58

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

D 231
BeSt Candidates

(size = 3)

er check!

H M@
» Pick up the unchecked best candidate (@). Check it.
» Find the connected points.

59

m Images are from [Malkov+, Information Systems, 2013]

V VYV VYV

Pick up the unchecked best candidate (@). Check it.
-ind the connected points.

Record the distances to q.

Alanb ayi 01 aso|)

D 231

Candidates
(size = 3)

er check!

60

m Images are from [Malkov+, Information Systems, 2013]

V VYV VYV

Pick up the unchecked best candidate (@). Check it.
-ind the connected points.

Record the distances to q.

O
o)
wn
™
—t
o
(s
>
™
fo!
c
D)
p
<

Candidates
(size = 3)

er check!

61

m Images are from [Malkov+, Information Systems, 2013]

V VYV VYV

O
o)
wn
™
—t
o
(s
>
™
fo!
c
@
p
<

Candidates
(size = 3)

entry point

\

Pick up the unchecked best candidate (@). Check it.
-ind the connected points.

Record the distances to q.

62

m Images are from [Malkov+, Information Systems, 2013]

Candidates
(size = 3)

entry point

\

Pick up the unchecked best candidate (@). Check it.
-ind the connected points.

Record the distances to q.

> Maintain the candidates (size=3) 63

V VYV VYV

m Images are from [Malkov+, Information Systems, 2013]

Candidates
(size = 3)

entry point

\

Pick up the unchecked best candidate (@). Check it.
-ind the connected points.

Record the distances to q.

> Maintain the candidates (size=3) o4

V VYV VYV

m Images are from [Malkov+, Information Systems, 2013]

@)

o)

(V)]

)

—t

o

—t

-

)

®)

-

D

<
Candidates
(size = 3)

entry point

65

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|D

Candidates
(size = 3)

entry point

66

m Images are from [Malkov+, Information Systems, 2013]

Alanb ay1 01 aso|)

Candidates
(size = 3)

entry point
\

H
> Pick up the unchecked best candidate ()

67

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

BeSt Candidates

(size = 3)

entry point

v \ (M)
» Pick up the unchecked best candidate (Q). Check it.

63

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

BeSt Candidates

(size = 3)

entry point

" N (M)
» Pick up the unchecked best candidate (Q). Check it.
» Find the connected points.

69

m Images are from [Malkov+, Information Systems, 2013]

Already

check! visited

K

O
o)
wn
™
—t
o
(s
>
™
fo!
c
D)
p
<

Candidates
(size = 3)

entry point

LM,
H

Pick up the unchecked best candidate (Q). Check it.
-ind the connected points.

Record the distances to q.

V VYV VYV

70

m Images are from [Malkov+, Information Systems, 2013]

Already

check! visited

K

O
o)
n
o)
—t
o
(s
>
™
fo!
c
D)
p
<

Candidates
(size = 3)

entry point

LM,
H

Pick up the unchecked best candidate (Q). Check it.
-ind the connected points.

Record the distances to q.

V VYV VYV

71

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

Candidates
(size = 3)

entry point

: |
Pick up the unchecked best candidate (Q). Check it.
-ind the connected points.

Record the distances to q.

V VYV VYV

72

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

Candidates
(size = 3)

entry point

H |
Pick up the unchecked best candidate (Q). Check it.

-ind the connected points.

Record the distances to q.

> Maintain the candidates (size=3) /3

V VYV VYV

m Images are from [Malkov+, Information Systems, 2013]

Candidates
(size = 3)

entry point

H |
Pick up the unchecked best candidate (Q). Check it.

-ind the connected points.

Record the distances to q.

> Maintain the candidates (size=3) 4

V VYV VYV

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

entry point

Candidates
(size = 3)

75

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|D

- L Candidates

| ‘
\ ' \ (size = 3)
, \\ entry point
: ©

76

m Images are from [Malkov+, Information Systems, 2013]

Alanb ay1 01 aso|)

BeSt Candidates

(size = 3)

entry point
\

H
> Pick up the unchecked best candidate (@)

LV

77

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

BeSt Candidates

(size = 3)

entry point
v \ (M)
» Pick up the unchecked best candidate (G). Check it.

/8

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

BeSt Candidates

(size = 3)

entry point
\

; 0
» Pick up the unchecked best candidate (G). Check it.
» Find the connected points.

/9

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

Candidates
(size = 3)

entry point

: |
Pick up the unchecked best candidate (Q). Check it.
-ind the connected points.

Record the distances to q.

V VYV VYV

30

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

Candidates
(size = 3)

entry point

: |
Pick up the unchecked best candidate (Q). Check it.
-ind the connected points.

Record the distances to q.

V VYV VYV

31

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

Candidates
(size = 3)

entry point

: |
Pick up the unchecked best candidate (Q). Check it.
-ind the connected points.

Record the distances to q.

V VYV VYV

32

m Images are from [Malkov+, Information Systems, 2013]

Candidates
(size = 3)

entry point

H |
Pick up the unchecked best candidate (G). Check it.

-ind the connected points.

Record the distances to q.

> Maintain the candidates (size=3) 83

V VYV VYV

m Images are from [Malkov+, Information Systems, 2013]

Candidates
(size = 3)

entry point

H |
Pick up the unchecked best candidate (G). Check it.

-ind the connected points.

Record the distances to q.

> Maintain the candidates (size=3) 84

V VYV VYV

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

entry point

Candidates
(size = 3)

85

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|D

Candidates
(size = 3)

36

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

BeSt Candidates

(size = 3)

entry point
\

H
» Pick up the unchecked best candidate (e).

LV

37

m Images are from [Malkov+, Information Systems, 2013]

E

PaN

O
o)
wn
™
—t
o
(s
>
™
fo!
c
@
-5
<

BeSt Candidates

(size = 3)

entry point

N

H LM
» Pick up the unchecked best candidate (e). Check it.

38

m Images are from [Malkov+, Information Systems, 2013]

v’
),n:, - @
A/

oA

, Best
" N (M)

» Pick up the unchecked best candidate (e). Check it.

» Find the connected points.

Alanb ayi 01 aso|)

B).

Candidates
(size = 3)

entry point

39

m Images are from [Malkov+, Information Systems, 2013]

AI.r('eady Already
visited N
visited

Alanb ayi 01 aso|)

Candidates
(size = 3)

Already entry point

visited

0

H

Pick up the unchecked best candidate (e). Check it.
-ind the connected points.
Record the distances to q.

V VYV VYV

90

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

Candidates
(size = 3)

entry point

. N (M)

Pick up the unchecked best candidate (e). Check it.

-ind the connected points.

Record the distances to q.

> Maintain the candidates (size=3) o1

V VYV VYV

m Images are from [Malkov+, Information Systems, 2013]

Alanb ayi 01 aso|)

entry point

Candidates
(size = 3)

92

m Images are from [Malkov+, Information Systems, 2013]

rN
[4
H

I
| 4

/

1R

~

\/

O
o)
wn
™
—
o
(s
>
™
fo!
c
@
-5
<

Candidates

\ (size = 3)
\\ entry point
O

93

m Images are from [Malkov+, Information Systems, 2013]

E

/D

1anb ayy 01 9so|)H

~ | <‘% Best

entry point

Candidates
(size = 3)

v \ (M)
» Pick up the unchecked best candidate (Q).

94

m Images are from [Malkov+, Information Systems, 2013]

1anb ayy 01 9so|)H

<l
N

e Best JECEE
J query
®

Candidates
(size = 3)

@

check! . N M)
» Pick up the unchecked best candidate (Q). Check it.

entry point

95

m Images are from [Malkov+, Information Systems, 2013]

@)
2
A F ®
e 7 ﬂ
= >
QN g e 2.3
B 9 0 i O
oD - T\ / Best O o-
J query - Candidates
@ 0 (size = 3)
entry point

check! N ‘M,

> Pick up the unchecked best candidate (@)). Check it.
» Find the connected points.

96

m Images are from [Malkov+, Information Systems, 2013]

Already
visited

-t
"

fO

B

@

check!

N

-ind the connected points.
Record the distances to q.

V VYV VYV

: \,
Pick up the unchecked best candidate (Q). Check

2.3

Alanb ayi 01 aso|)

B
0 ::
© os

Candidates
(size = 3)

entry point

M,
it.

97

m Images are from [Malkov+, Information Systems, 2013]

Already
visited

-t
"

fO

B

@

check!

N

-ind the connected points.
Record the distances to q.

V VYV VYV

: \,
Pick up the unchecked best candidate (Q). Check

)
o
o
1 o
=
e) 23
E 0 ::
= © os

Candidates
(size = 3)

entry point

M,
it.

98

m Images are from [Malkov+, Information Systems, 2013]

V VYV VYV

il
N

° 0
@J query

| Best oy

N

: \
Pick up the unchecked best candidate (Q). Check
-ind the connected points.
Record the distances to q.

M,
it.

Alanb ayi 01 aso|)

entry point

Candidates
(size = 3)

99

m Images are from [Malkov+, Information Systems, 2013]

il
N

° 0
@J query

| Best oy

N

-ind the connected points.
Record the distances to q.
» Maintain the candidates (size=3)

V VYV VYV

) \
Pick up the unchecked best candidate (Q). Check

)
o
B
o
S
e) 23
E 0 ::
= © os

Candidates
(size = 3)
entry point
M,
it.
100

m Images are from [Malkov+, Information Systems, 2013]

il
N

° 0
@J query

| Best oy

N

-ind the connected points.
Record the distances to q.
» Maintain the candidates (size=3)

V VYV VYV

) \
Pick up the unchecked best candidate (Q). Check

@)
O
(Vp]
M
o
-
M
e) 23
o 0 ::
<
© os
Candidates
(size = 3)
entry point
M)
It.
101

m Images are from [Malkov+, Information Systems, 2013]

@)

o)

(V)]

)

—t

o

5

@ 2.3

3 B

$ | ©

<

© os
Candidates
(size = 3)
entry point

» All candidates are checked. Finish.
> Here, @ is the closet to the query (O)

102

m Images are from [Malkov+, lofarmatign

Final output 1: Candidates 2
» You can pick up topk results g
E-) 23
C
0 ® 0 ::
= © os
Candidates
D’ (size = 3)
entry point

> All candidates are checked. Finish.
> Here, @ is the closet to the query (O)

103

m Images are from [Malkov+, lofarmatign

Final output 1: Candidates S
- S
o
oD
M
E e 23
O 5 0 ::
N <
G O © os
J query Candidates
0 (size = 3)
entry point
n (M)
> All ~- ac aro rhoclod Einish.

> Fln.al output 2: Checked items ory (O)
» i.e., search path

104

m Images are from [Malkov+, lofarmatign

Final output 1: Candidates
» You can pick up topk results

~p

B el
\f 5
D,

> All ~- ac ara chaclkoad Finjsh
> Final output 2: Checked items ory

» i.e., search path

(M,

Alanb ayi 01 aso|)

entry point

Final output 3: Visit flag
» For each item, visited or not

Candidates
(size = 3)

105

» Background
» Graph-based search
v’ Basic (construction and search)
v' Observation
v' Properties
» Representative works
v" HNSW, NSG, NGT, Vamana
» Discussion 106

Observation: runtime

> Item comparison takes time; O(D)

‘c;EIRD\

@«

» The overall runtime ~ #item comparison
~ length of search path * average outdegree

start

query &

query@

start

w-

‘!ila‘.

.v®

e~

X3 € RP

%y

query

start

outdegree =1

outdegree = 2

outdegree = 2

#item comparison = 3 * (1 + 2 + 2)/3 =

5

107

Observation: runtime
| Observation: runtime (e ®?]

> Item comparison takes time; O(D)

o"“

» The overall runtime ~ #item_comparison

“"‘l\

X3 € RP

~ length of search path * average outdegree

st
star

start

me

start

qu
— (2) How to sparsify the graph?

To accelerate the search,
(1) How to shorten the search path?
» E.g., long edge (shortcut), hierarchical structure

_ » E.g., deleting redundant edges

‘?

/ 108

Observation: candidate size

Candidates
(size = 1)
___ Fast. But stuck in a local minimum

uer
start query

query

Slow. But find a better solution

Candidates
(size = 3)

size = 1: Greedy search

» Larger candidate size, better but slower results
» Online parameter to control the trade-off
» Called “ef” in HNSW

size > 1: Beam search

109

Algorithm 1. Search-on-Graph(G, p, q, [)

Require: graph G, start node p, query point g, candidate pool

size [

Ensure: k nearest neighbors of g

1:

i = 0, candidate pool S = ()

2: S.add(p)

3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

while: < [do

i = the id of the first unchecked node p; in S
mark p; as checked
for all neighbor n of p; in G do
if n has not been visited then
S.add(n)
end if
end for
sort S in ascending order of the distance to q
if S.size() > [then
S.resize(l) / / remove nodes from back of S to keep its
size no larger than
end if

16: end while
17: return the first knodesin S

NSG [Cong+, VLDB 19]

Algorithm 1: GreedySearch(s,x,, k. L)

Data: Graph G with start node s, query x,, result
size k, search list size L > k
Result: Result set £ containing k-approx NNs, and
a set V containing all the visited nodes
begin
initialize sets L+ {s} and V <+ 0
while £\ V # 0 do
let px 4— argmingep\y |[xp — Xgl|
update L < LU Ny (p*) and
V«VuU{p'}
if |[£| > L then
update £ to retain closest L
L points to X4

return [closest k points from L; V]

DiskANN [Subramanya+, NeurlPS 19]

Algorithm 1 Beam search
Data: graph G, query ¢, initial vertex vg, output size k
Initialization:
V = {wp} // a set of visited vertices
H = {vg : d(vqg.q)} // a heap of candidates
while has runtime budget do
v; = SelectNearest(H, q)
for v € Ezpand(v;,G) do
if v £V then
V = Add(V,v)
H := Insert(H,v,d(0,q))
end
end

end
return TopK(V, q, k)

Learning to route [Baranchuk+, ICML 19]

> All papers have totally different pseudo code ®
» Principles are the same. But small details are different.
» Hint: Explicitly state the data structure or not

110

Pseudo code

Candidates are stored Candidates are stored

Algorithm 1 Beam search

Data: graph G, query ¢, initial vertex vg, output size k
Initialization:

V = {wg} // a set of visited vertices

Ensure: k neares
1: i =0, candid:
: S.add(p)

: whilei < [d

b all the visited nodeé

begin
initialize set

while has runtime budget do
+— {s} and V+ 0 v; = SelectNearest(H. q)

2
3
4 i = the id e first unchecked node p; in S - R
5 mark p; a while £\ V #£ 0 dd for v € Expand(v;, G) do
6 for all neighbor n of p; in G do let p* <— arg min Xp — Xql| if v £V then
7 if n has not been visited then update and V = Add(V,v)
5 [Saddmyr] V< Vu{p'} H := Insert(H,v,d(
9 end if if |£| > L then end
E): end for update £ to retain [closest L end
12 if Ssize() > [then B points to Xg end
13: .SI.I‘ESLZE(E) / / remove nodes fro ck of S to keep its return [closest k points f L, V] return TopK(V, q. k)
14: size no larger than L
15: endif

16: end while Learning to route [Bara

17: return the first k nodesin §

DiskANN [Subramany

| When need to sort, Candidates are stored in a
\ say “closest L points” [heap; automatically sorted

» Hint: Explicitly state the data structure or not
111

Algorithm 1. Search-on-Graph(G, p, q, 1) Algorithm 1: GreedySearch(s.x,. k, L) Algorithm 1 Beam search
Require: graph G, start node p, query point g, candidate pool ~ Data: Graph G with start node s, query x,, result Data: graph G. query g, initial vertex vo, output size k
sizel size k, search list size L > k Initialization:
Ensure: k nearest neighbors of g Result: Result set £ containing k-approx NNs, and V = {wo} // aset of visited vertices
; ; =a3:df(31;dldate pool S =0 a set V) containing all the visited nodes H = {vo : d(vo, q)} // a heap of candidates
- At b begin while has runtime budget do
3: while: < ldo L — SelectNearest(H. o
4 i = the id of the first unchecked node p; in S 1nJ:t1allze sets L« {8} and V + 0 Ui - electNearest(H, q)
5. mark p, as checked while £\ V # 0 do for v € Expand(v;, G) do
6: for all neighbor n of p; in G' do let px <~ argminger\y [[xp — Xq| if v £V then
7: if n has nqt been visited then update L < LU Noui(p*) and V = Add(V,v)
8: V+Vu{p} H := Insert(H,v,d(0,q))
9: .
10:]) update o retain closest L
11: ding order of the distance to q oint end
12: then - P end
: remove nodes from back of 5'to keep its return [close ts from L; V| return TopK(V, q, k)

Learning to route [Baranchuk+, ICML 19]

DiskANN [S NeurlPS 19]

19]

YRve1e:]Il' Checked items are stored in a set (“visit” in
R R];: Lhis code means “check” in our notation)

» Hint: Explicitly state the data structure or not
112

Algorithm 1. Search-on-Graph(G, p, q, 1)

Require: graph G, start node p, query point q, candidate pool
size [
Ensure: k nearest neighbors of g
1: i =0, candidate pool S = 0
2: S.add(p)
3: while: < [do
4 i = the id of the first unchecked node p; in S
5 mark p; as checked
6: for all neighbor n of p; in G' do
7: if n has not been visited|then
8: S.add(n)
9: end if
10: end for
11: sort.S in ascending
12 if S.size() > [they
13: S.resize(l) / / re
14: size no larger t}
15: endif
16: end while
17: return the first % g

the distance to q

pm back of S to keep its

Visited item are simply said to be “visited”; implying

an additional hidden data structure (array)
~ JI1C dl C C C -

Algorithm 1: GreedySearch(s.x,. k, L)

Algorithm 1 Beam search

Data: Graph GG with start node s, query x4, result
size k, search list size L > k
Result: Result set £ containing k-approx NNs, and
a set V containing all the visited nodes
begin
initialize sets L+ {s} and V <+ 0
while £\ V # 0 do
let px 4— argmingep\y |[xp — Xgl|
update L < LU Noui(p*) and
V«VU{p'}
if |£| > L then
update £ to retain closest L
L points to X4

return [closest k points from L; V]

Data: graph G, query ¢, initial vertex vg, output size k
Initialization:
V = {wo} // a set of visited vertices
H = {vg : d(vg,q)} // a heap of candidates
while has runtime budget do
v; = SelectNearest(H, q)
for v € Expand(v;,G) do
if © € V then
V = Add(V,v)
H A Insert(H,v,d(v,q))

end
end

end
return TopK

DiskANN [Subramanya+, NeurlPS 19]

» Hint: Explicitly state the data structure or not

Learning bute [Baranchuk+, ICML 19]

Visited items are

stored in a set

113

Algorithm 1. Search-on-Graph(G, p, q, 1)

Require: graph G, start node p, query point q, candidate pool

size [

Ensure: k nearest neighbors of g

1

15:
16: end while
17: return the first knodesin S

: 1= 0, candidate pool S = ()
: S.add(p)
whilez < [do
1 = the id of the first unchecked node p; in S
mark p; as the
for all neighbor nSig, in G do
if n has not been visitc®
S.add(n)
end if
end for
sort S in ascending order of the distance to g
if S.size() > [then
S.resize(l) / / remove nodes from back of
size no larger than
end if

Algorithm 1: GreedySearch(s.x,. k, L)

NSG [Cong+, VLDB 19]

Data: Graph GG with start node s, query x4, result

size k, search list size L > k

Result: Result set £ containing k-approx NNs, and
a set V containing all the visited nodes

begin
initialize sets L+ {s} and V <+ 0
while £\V # 0 do
let px 4 argmingep\y |[Xp — Xgl|
LU Noue(p*) and

Algorithm 1 Beam search

Data: graph G, query ¢, initial vertex vg, output size k
Initialization:
V = {wo} // a set of visited vertices
H = {vg : d(vg,q)} // a heap of candidates
while has runtime budget do
v; = SelectNearest(H., q)
" for v Ezpand(v;,G) do
if v € V then
V = Add(V,v)
H := Insert(H,v,d(0,q))
end
end

end
return TopK(V, q. k)

Learning to route [Baranchuk+, ICML 19]

> All papers have totally different pseudo code ®
» Principles are the same. But small details are different.
» Hint: Explicitly state the data structure or not

114

Algorithm 1. Search-on-Graph(G, p, q, 1)

Require: graph G, start node p, query point q, candidate pool
size |

Ensure: k nearest neighbors of g

1: i =0, candidate pool S = ()

2: S.add(p)

3: while: < ldo
i = the id of the first unchecked node p; in S
mark p; as checked
for all neighbor n of p; in G' do

if n has not been visited then
S.add(n)

9: end if
10: end for
11: sort S in ascending order of the distance to q
12: if S.size() > [then

13: S.resize(l) / / remove nodes from back of S to keep its
14: size no larger than
15: endif

16: end while
17: return the first k nodesin §

NSG [Cong+, VLDB 19]

> All papers

Algorithm 1: GreedySearch(s.x,. k, L)

Data: Graph GG with start node s, query x4, result
size k, search list size L > k
Result: Result set £ containing k-approx NNs, and
a set V containing all the visited nodes
begin
initialize sets L+ {s} and V <+ 0
while £\ V # 0 do
let px 4— argmingep\y |[xp — Xgl|
update L < LU Noui(p*) and
V«VU{p'}
if |£| > L then
update £ to retain closest L
L points to X4

return [closest k points from L; V]

Algorithm 1 Beam search

Data: graph G, query ¢, initial vertex vg, output size k
Initialization:
V = {wo} // a set of visited vertices
H = {vg : d(vg,q)} // a heap of candidates
while has runtime budget do
v; = SelectNearest(H, q)
for v € Expand(v;,G) do
if v € V then
V = Add(V,v)
H := Insert(H,v,d(0,q))
end
end

end
return TopK(V, q, k)

DiskANN [Subramanya+, NeurlPS 19]

nseudo code ®

Learning to route [Baranchuk+, ICML 19]

) My explanation was based on NSG, but with slight modifications for simplicity:
y » Candidates are stored in an automatically-sorted array

> Termination condition is “all candidates are checked”

Algorithm 1. Search-on-Graph(G, p, q,) Algorithm 1: GreedySearch(s.x,. k, L) Algorithm 1 Beam search
Require: graph G, start node p, query point q, candidate pool Data: Graph G with start node s, query x,. result Df,t.a: ‘ng?h G, query g, initial vertex v, output size k
size [_ size k, search list size [> k Initialization:

Ensure: & “eg?;t “elghllmfs_“éq Result: Result set £ containing k-approx NNs, and V = {wo} // aset of visited vertices

;j ?,g_ag,dc(ar; idate pool 5= a set V containing all the visited nodes H = {vg : d(vg,q)} // a heap of candidates
3. ;,a\,:hile?;r,< Ido begin while has runtime budget do

4: i = the id of the first unchecked node p; in S in:i:tialize sets L+« {s} and V« 0 Ui :ASelectNearest(H, q)

5: mark p; as checked while £\ V # 0 do for v € Expand(v;, G) do

6: for all neighbor n of p; in G do let px < arg minpeg\v ||xp — xq|| if o §E V then

7: if n has not been visited 2 i

8: S.add(n) | .

9: dif

g has Formal (?) definition would be helpful for everyone

11: sort.S in ascending order o
12: if S.size() > [then

end

13: LSj.resize(E)// remove nodes from back of S to keep its return [closest l points from L; V] return TopK(V, q. k)

14: size no larger than

15 endif Learning to route [Baranchuk+, ICML 19
16: end while DiskANN [Subramanya+, NeurlPS 19] 8 ! ’]

17: return the first knodesin S

NSG [Cong+, VLDB 19]

> All papers have totally different pseudo code ®
» Principles are the same. But small parts are very different
» Hint: Explicitly state the data structure or not

116

» Background
» Graph-based search
v’ Basic (construction and search)
v' Observation
v Properties
» Representative works
v" HNSW, NSG, NGT, Vamana
» Discussion

Base graph

(c) KNNG, degree = 22 * (d) MST, degree = 20

» Although there are many graph algorithms, there exists four base graph:s.
» These base graphs are (1) slow to be constructed, and (2) often too dense
» Each algorithm often improves one of the base graphs

Images are from an excellent survey paper [Wang+, VLDB 2021]

118

Principal:

Ba Se gra p h > Not too dense: Search is slow for dense graph

» But moderately dense: Each points should be reachable
e - 1

(c) KNNG, degree = 22 ' (d) MST, degree = 20

» Although there are many graph algorithms, there exists four base graph:s.
» These base graphs are (1) slow to be constructed, and (2) often too dense
» Each algorithm often improves one of the base graphs

Images are from an excellent survey paper [Wang+, VLDB 2021]

119

Principal:

Ba Se gra p h » Not too dense: Search is slow for dense graph

» But moderately dense: Each points should be reachable

Famous Delaunay graph
© Always reaches the correct answer
@ Almost fully connected when D is large

, Al T — g

» Although there are many graph algorithms, there exists four base graph:s.
» These base graphs are (1) slow to be constructed, and (2) often too dense
» Each algorithm often improves one of the base graphs

Images are from an excellent survey paper [Wang+, VLDB 2021]

120

Principal:

Ba Se gra p h > Not too dense: Search is slow for dense graph

» But moderately dense: Each points should be reachable

» Consider x and y. There must be no points in the “lune”
» Can cut off redundant edges

1se graphs.
too dense

121

Images are from an excellent survey paper [Wang+, VLDB 2021]

Principal:

Ba Se gra p h > Not too dense: Search is slow for dense graph

» But moderately dense: Each points should be reachable

K Nearest Neighbor Graph
© Can limit the number of neighbor (K at most), enforcing a sparsity
@ No guaranty for the connectivity

(c) KNNG, degree = 22 & (d) MST, degree = 20
» Although there are many graph algorithms, there exists four base graph:s.
» These base graphs are (1) slow to be constructed, and (2) often too dense
» Each algorithm often improves one of the base graphs

Images are from an excellent survey paper [Wang+, VLDB 2021]

122

Principal:

Ba Se gra p h » Not too dense: Search is slow for dense graph

» But moderately dense: Each points should be reachable
I EEEEEmEmmmmmmEmmm—— T B E EEEEEmm S EEEEE——— |

Minimum Spanning Tree (MST)
© Ensure the global connectivity. Low degree. ..
® Lack of shortcuts

(c) KNNG, degree = 22 ' (d) MST, degree = 20

» Although there are many graph algorithms, there exists four base graph:s.
» These base graphs are (1) slow to be constructed, and (2) often too dense
» Each algorithm often improves one of the base graphs

Images are from an excellent survey paper [Wang+, VLDB 2021]

123

Graph search algorithms

Table 2: Summary of important representative graph-based ANNS algorithms

Figure 3: Roadmaps of graph-based ANNS algorithms.

Algorithm | Base Graph | Edge | Build Complexity | Search Complexity
KGraph [31] | KNNG directed O(|s|-1) O(|S|**1)3
NGT [46] KNNG+DG+RNG | directed O(|S|-4)* O(|§|%5%)3
SPTAG [27] KNNG+RNG directed OS] - log(|S|° +t*))T O |5|")3
NSW [65] DG undirected | OS] - log” (|5]))* O(log” (|5]))
IEH [54] KNNG directed OS] - log(|S]) + |S[*)F O(]85]%52)3
FANNG [43] | RNG directed O(|S|* - log(|S])) O(]5]%%)
HNSW [67] DG+RNG directed O(|S]| - log(|S])) O(log(|S]))
EFANNA [36] | KNNG directed O(|5|-1%* O(|5|%¥)*
DPG [61] KNNG+RNG undirected | Of |5|I SENE O[553
NSG [38] ENNG+ENG directed O(1s|= -log(|S]) + S| | O(log(|S])
HCNNG [72] | MST directed O(|S]| - log(|S])) O(|5|%4)%
Vamana [88] | RNG directed O(|5|-1)* O(|5|"7)*
NSSG [37] KNNG+RNG directed 5]+ |5 O(log(|S))

The arrows from a base graph (green shading) to an algo-

T ¢, t are the constants. ¥ Complexity is not informed by the authors; we derive it based on the relate

papers’ descriptions and experimental estimates. See Appendmx D for deatils.

» Lots of algorithms

an
-

g rithm (gray shading) and from one algorithm to another
indicate the dependence and development relationships.

» The basic structure is same: (1) designing a good graph + (2) beam search

Images are from an excellent survey paper [Wang+, VLDB 2021]

124

The initial seed matters

V.S.

Start here? Start here?

» Starting from a good seed ™ Shorter path ™ Faster search
» Finding a good seed is also an ANN problem
» Solve a small ANN problem by tree [NST; Iwasaki+, arXiv 18],

hash [Effana; Fu+, arXiv 16] or LSH [LGTM; Arai+, DEXA 21]
125

Edge selection: RNG-pruning —
@ @ connectid

Al :
neighbors?

» Too many edges > Not reachable RNG-pruning: Moderate
> Slow for search B > [ow accuracy. Jll number of edges

When inserting A,
where to edge? [

Edge selection: RNG-pruning

Given A, make edges to
B, C, D, and E?

127

Edge selection: RNG-pruning

o ©

128

Edge selection: RNG-pruning

Find the nearest one to A

129

Edge selection: RNG-pruning

Find the nearest one to A

» For all neighbors of A, compare Rg and %y
> |If \ is the shortest, make an edge

130

Edge selection: RNG-pruning

Find the nearest one to A

» For all neighbors of A, compare Rg and %y
> |If \ is the shortest, make an edge

This time, there are no neighbors. So let’s make an edge 131

Edge selection: RNG-pruning

done

o O

N

132

Edge selection: RNG-pruning

Find the 2"9 nearest one to A

133

Edge selection: RNG-pruning

Find the 2"9 nearest one to A

» For all neighbors of A, compare Rg and %y
> |If \ is the shortest, make an edge

134

» For all neighbors of A, compare Rg and %y
> |If \ is the shortest, make an edge

135

Edge selection: RNG-pruning

done

do@ne G

N

136

Edge selection: RNG-pru Bl CEES T SRR

done

137

Edge selection: RNG-pru Bl CEES T SRR

» For all neighbors of A, compare\ and \
> If \ is the shortest, make an edge

138

Edge selection: RNG-pru Bl CEES T SRR

Shortest! Make an edge

» For all neighbors of A, compare Rg and %y
> If \ is the shortest, make an edge

139

Edge selection: RNG-pruning

done
done

do@ne G

140

Edge SElECtiOh: RNG'pr Find the 4" nearest one to A

done

141

Edge SElECtiOh: RNG'pr Find the 4" nearest one to A

done

_——\

» For all neighbors of A, compare Rg and %y
> |If \ is the shortest, make an edge

142

Edge SElECtiOh: RNG'pr Find the 4" nearest one to A

Shortest! Not make an edge

done

dg G

_——\

» For all neighbors of A, compare Rg and %y
> |If \ is the shortest, make an edge

143

Edge selection: RNG-pruning

done

done done

do@ne G

144

Edge selection: RNG-pruning

done

D

done

E

done

do@ne G

» RNG-pruning is an effective edge-pruning technique,
and used in several algorithms

Pros: Implementation is easy
Cons: Require many distance computations 145

» Background
» Graph-based search
v’ Basic (construction and search)
v' Observation
v' Properties
» Representative works
v" HNSW, NSG, NGT, Vamana
» Discussion 146

Hierarchical Navigable Small World; HNSW

» Construct the graph hierarchically [malkov and Yashunin, TPAMI, 2019]
» Fix ##edge per node by RNG-pruning
» The most famous algorithm; works very well in real world

/ \ / 4 Search on a coarse graph

et Move to the same node on a
‘ } finer graph

Layer=0 i
| 4 Repeat
‘ \/

[Malkov and Yashunin, TPAMI, 2019]

Decreasing characteristic radius

Hierarchical Navigable Small World; HNSW

» Used in various services
v milvus, weaviate, gdrant, vearch, elasticsearch,
OpenSearch, vespa, redis, Lucene...

» Three famous implementations
v" NMSLIB (the original implementation)
v hnswlib (light-weight implementation from NMSLIB)
v’ Faiss (re-implemented version by the faiss team)

[NMSLIB] https://github.com/nmslib/nmslib
[hnswilib] https://github.com/nmslib/hnswlib
[Faiss] https://github.com/facebookresearch/faiss/blob/main/faiss/IndexHNSW.h

https://github.com/nmslib/nmslib
https://github.com/nmslib/hnswlib
https://github.com/facebookresearch/faiss/blob/main/faiss/IndexHNSW.h

Discussion from Faiss User Forum in FB
Note that this discussion was in 2020 and the libraries have been updated a lot since then

Any implementation difference between NMSLIB,
hnswlib, and faiss-hnsw?

Yury Malkov
(the author of
HNSW paper)

My view on the implementation differences (I might forgot something):

1) nmslib’s HNSW requires internal index conversion step (from nmslib’s format to an internal one) to have good performance, and after the
conversion the index cannot be updated with new elements. nmslib also has a simple "graph diversification" postprocessing after building the
index (controlled by the "post" parameter) and sophisticated queue optimizations which makes it a bit faster compared to other
implementations. Another advantage of nmslib is out-of-the box support for large collection of distance functions, including some exotic
distances.

2) hnswlib is a header-only C++ library reimplementation of nmslib's hnsw. It does not have the index conversion step, thus - the Pros
(compared to nmslib): much more memory efficient and faster at build time. It also supports index insertions, element updates (with
incremental graph rewiring - added recently) and fake deletions (mark elements as deleted to avoid returning them during the graph traversal).
Cons (compared to nnmslib): It is a tad slower than nmslib due to lack of graph postprocessing and queue optimization; out-of-the box version
supports only 3 distance functions, compared to many distance functions in nmslib. Overall, I've tried to keep hnswlib as close as possible to a
distributed index (hence no index postprocessing).

3) Faiss hnsw is a different reimplementation. It has its own algorithmic features, like having the first elements in the upper layers on the
structure (opposed to random in other implementations). It is a bit more memory efficient compared to hnswlib with raw vectors and
optimized for batch processing. Due to the latter it is noticeably slower at single query processing (opposed to nmslib or hnswlib) and
generally a bit slower for batch queries (the last time I've tested, but there were exceptions). The implementation also supports incremental
insertions (also preferably batched), quantized data and two-level encoding, which makes it much less memory hungry and the overall best
when memory is a big concern.

T

https://www.facebook.com/groups/faissusers/posts/917143142043306/?comment_id=917533385337615&reply comment_id=920542105036743

Hierarchical Navigable Small World; HNSW

» See the following excellent blog posts for more details

Hierarchical Navigable
Small Worlds (HNSW)

Vector Search
Hierarchical Navigable Small Worlds (HNSW)

Faiss: The Missing

M: |
anual — — /

Chapters:

1. Introduction to Facebook
Al Similarity Search
(Faiss)

2. Nearest Neighbor
Indexes for Similarity
Search

3. Locality Sensitive
Hashing (LSH): The
lllustrated Guide

4. Random Projection for Hierarchical Navigable Small World (HNSW) graphs are among the top-

Locality Sensitin . . R X
H:::;,:; erettve performing indexes for vector similarity searchl!l. HNSW is a hugely

5. Product Quantization popular technology that time and time again produces state-of-the-art

6. Hierarchical Navigable performance with super fast search speeds and fantastic recall.

Small Worlds (HNSW)

*Z"“Z Cloud Pricing Learn v Open-source Company v Get Started Free

< Back

Vector Database 101

Hierarchical Navigable Small
Worlds (HNSW)

¢ zilliz
Vector Database 101

Hierarchical Navigable

Small Worlds (HNSW)

\1‘3 Frank Liu

Content
Hierarchical Navigable Small Worlds
(HNSW) HNSW basics

Implement ing HNSW

Wrapping up

Introduction
Take another look at the Vector
Database 101 courses

indexin s which are used to reduce the overall size of the database without reducing the
ur search. To better illustrate how scalar quantization and product quantization works,
we also implemented our own versions in Python. Take Zilliz for a spin with our free

30-day trial

IVFPQ + HNSW for Billion-scale
Similarity Search

The best indexing approach for billion-sized vector datasets

Peggy Chang - Follow

.

Published in Towards Data Science - 17 minread - Aug 30,2022

https://www.pinecone.io/learn/hnsw/
James Briggs, PINECONE, Faiss: The
Missing Manual, 6. Hierarchical
Navigable Small Worlds (HNSW)

https://zilliz.com/blog/hierarchical-

navigable-small-worlds-HNSW

Frank Liu, zilliz, Vector Database 101,
Hierarchical Navigable Small Worlds
(HNSW)

https://towardsdatascience.com

/ivfpg-hnsw-for-billion-scale-

similarity-search-89ff2f89d90e

Peggy Chang, IVFPQ + HNSW for
Billion-scale Similarity Search

150

https://www.pinecone.io/learn/hnsw/
https://zilliz.com/blog/hierarchical-navigable-small-worlds-HNSW
https://zilliz.com/blog/hierarchical-navigable-small-worlds-HNSW
https://towardsdatascience.com/ivfpq-hnsw-for-billion-scale-similarity-search-89ff2f89d90e
https://towardsdatascience.com/ivfpq-hnsw-for-billion-scale-similarity-search-89ff2f89d90e
https://towardsdatascience.com/ivfpq-hnsw-for-billion-scale-similarity-search-89ff2f89d90e

Navigating Spreading-out Graph (NSG) .., vos 19
» Monotonic RNG

» In some cases, slightly better than HNSW
» Used in Alibaba’s Taobao

» Recall the def. of RNG is “no point in a lune”

» The path “p ->qg” is ling Monotonic RNG can

make more edges
t.

Images are from

RNG Monotonic RNG [Fu+, VLDB 19]

Navigating Spreading-out Graph (NSG) .., vos 19

» The original implementation: https:/github.com/ZIULearning/nsg

» Implemented in faiss as well
» If you're using faiss-hnsw and need a little bit more
performance with the same interface, worth trying NSG

IndexHNSWFlat(int d, int M, MetricType metric)
IndexNSGFlat(int d, int R, MetricType metric)

https://github.com/ZJULearning/nsg

Neighborhood Graph and Tree (NGT) uasakis, anv 18

>

YV VYV V

Make use of range search for construction
Obtain a seed via VP-tree

Current best methods in ann-benchmarks
are NGT-based algorithms
Quantization is natively available

Repository: https://github.com/yahoojapan/NGT

FrOm YahOO Japan Image are from the
. original repository
Used in Vald

153

https://github.com/yahoojapan/NGT

DiSkAN N (Va ma na) [Subramanya+, NeurlPS 19]

» Vamana: Graph-based search algorithm
» DiskANN: Disk-friendly search system using Vamana
> From MSR India https://github.com/microsoft/DiskANN

» Good option for huge data (not the main focus of this talk, though)
» The same team is actively developing interesting functionalites
v’ Data update: FreshDiskANN [Singh+, arXiv 21]
v’ Filter: Filtered-DiskANN [Gollapudi+, WWW 23]

154

https://github.com/microsoft/DiskANN

» Background
» Graph-based search
v’ Basic (construction and search)
v' Observation
v' Properties
» Representative works
v" HNSW, NSG, NGT, Vamana
» Discussion

Just NN? Vector DB?

» Vector DB companies say “Vector DB is cool” @

v https://weaviate.io/blog/vector-library-vs-vector-database
v https://codelabs.milvus.io/vector-database-101-what-is-a-vector-database/index#2
v’ https://zilliz.com/learn/what-is-vector-database

» My own idea:

If speed is the only concern,
just use libraries

SIOW Try fast algorithm such

as HNSW in faiss

Try the simplest
numpy—only search
° “’b/eo\} / S\’
Speed er tha Try Vector DB Q(O

8., CRup)

> Which vector DB? = No conclusions!

» If you need a clean & well designed API, | recommend taking a look
at docarray in Jina Al (see Han’s talk today!)

?\\)0\

https://weaviate.io/blog/vector-library-vs-vector-database
https://codelabs.milvus.io/vector-database-101-what-is-a-vector-database/index#2
https://zilliz.com/learn/what-is-vector-database

Useful resources

» Several companies have very useful blog series

» Pinecone Blog
v’ https://www.pinecone.io/learn/
» Weaviate Blog
v’ https://weaviate.io/blog
» Jina Al Blog
v’ https://jina.ai/news/
» Zilliz Blog
v’ https://zilliz.com/blog
» Romain Beaumont Blog
v’ https://rom1504.medium.com/ 157

https://www.pinecone.io/learn/
https://weaviate.io/blog
https://jina.ai/news/
https://zilliz.com/blog
https://rom1504.medium.com/

Progress in the last three years

» Three years have passed since my previous tutorial at CVPR 2020

@VPRVIRTUAL

- o Y. Matasui, “Billion-scale Approximate Nearest Neighbor Search”, CVPR 2020 Tutorial
pie'a",Z;T.f.;ghi‘L'f;‘Lchf » Slide: https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-

_ Yusuke Matsui approximate-nearest-neighbor-search
e University of Tokyo . .
> Video: https://voutu.be/SKrHs03i08Q

o

» What progress in the last three years in the ANN field?

158

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://youtu.be/SKrHs03i08Q

Pr

[DTN DI .

» The basic framework is still same (HNSW and IVFPQ!)

» Th » HNSW is still de facto standard; although several papers

CCCCCC

> W

claim they perform better

» Disk-based systems are getting attention

» Vector DB has gained rapid popularity for LLM applications.

» Because of LLM, we should suppose D as ~1000 (not ~100)

» GPU-ANN is powerful, but less widespread than | expected;
CPUs are more convenient for LLM

» Competitions (SISAP and bigann-benchmarks)

» New billion-scale datasets

» A breakthrough algorithm that goes beyond graph-based
methods awaits. =

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search
https://youtu.be/SKrHs03i08Q

> Background Tomakegrap
» Graph-based search
v’ Basic (construction and search)
v' Observation
v' Properties
» Representative works
v" HNSW, NSG, NGT, Vamana
» Discussion

Reference

[Jégou+, TPAMI 2011] H. Jégou+, “Product Quantization for Nearest Neighbor Search”, IEEE TPAMI 2011

[Guo+, ICML 2020] R. Guo+, “Accelerating Large-Scale Inference with Anisotropic Vector Quantization”, ICML 2020

[Malkov+, TPAMI 2019] Y. Malkov+, “Efficient and Robust Approximate Nearest Neighbor search using Hierarchical Navigable Small
World Graphs,” IEEE TPAMI 2019

[Malkov+, IS 13] Y, Malkov+, “Approximate Nearest Neighbor Algorithm based on Navigable Small World Graphs”, Information
Systems 2013

[Fu+, VLDB 19] C. Fu+, “Fast Approximate Nearest Neighbor Search With The Navigating Spreading-out Graphs”, 2019
[Subramanya+, NeurlPS 19] S. J. Subramanya+, “DiskANN: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node”,
NeurlPS 2019

[Baranchuk+, ICML 19] D. Baranchuk+, “Learning to Route in Similarity Graphs”

[Wang+, VLDB 21] M. Wang+, “A Comprehensive Survey and Experimental Comparison of Graph-Based Approximate Nearest
Neighbor Search”, VLDB 2021

[Toussaint, PR 80] G. T. Toussaint, “The Relative Neighbouhood Graph of A Finite Planar Set”, Pattern Recognition 1980

[Fu+, arXiv 16] C. Fu and D. Cai, “Efanna: An Extremely Fast Approximate Nearest Neighbor Search Algorithm based on knn Graph”,
arXiv 2016

[Arai+, DEXA 21] Y. Arai+, “LGTM: A Fast and Accurate kNN Search Algorithm in High-Dimensional Spaces”, DEXA 2021

[lwasaki+, arXiv 18] M. lwasaki and D. Miyazaki, “Optimization if Indexing Based on k-Nearest Neighbor Graph for Proximity Search in
High-dimensional Data”, arXiv 2018

[Singh+, arXiv 21] A. Singh+, “FreshDiskANN: A Fast and Accurate Graph-Based ANN Index for Streaming Similarity Search”, arXiv 2021
[Gollapudi+, WWW 23] S. Gollapudi+, “Filtered-DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with Filters”,
WWW 2023

Reference

[Pinecone] https://www.pinecone.io/

[Milvus] https://milvus.io/

[Qdrant] https://gdrant.tech/

[Weaviate] https://weaviate.io/

[Vertex Al Matching Engine] https://cloud.google.com/vertex-ai/docs/matching-engine

[Vald] https://vald.vdaas.org/

[Vearch] https://vearch.github.io/

[Elasticsearch] https://www.elastic.co/jp/blog/introducing-approximate-nearest-neighbor-search-in-elasticsearch-8-0
[OpenSearch] https://opensearch.org/docs/latest/search-plugins/knn/approximate-knn/

[Vespa] https://vespa.ai/

[Redis] https://redis.com/solutions/use-cases/vector-database/

[Lucene] https://lucene.apache.org/core/9 1 0/core/org/apache/lucene/util/hnsw/HnswGraphSearcher.html
[SISAP] SISAP 2023 Indexing Challenge https://sisap-challenges.github.io/

[Bigann-benchmarks] Billion-Scale Approximate Nearest Neighbor Search Challenge: NeurlPS'21 competition track
https://big-ann-benchmarks.com/

162

https://www.pinecone.io/
https://milvus.io/
https://qdrant.tech/
https://weaviate.io/
https://cloud.google.com/vertex-ai/docs/matching-engine
https://vald.vdaas.org/
https://vearch.github.io/
https://www.elastic.co/jp/blog/introducing-approximate-nearest-neighbor-search-in-elasticsearch-8-0
https://opensearch.org/docs/latest/search-plugins/knn/approximate-knn/
https://vespa.ai/
https://redis.com/solutions/use-cases/vector-database/
https://lucene.apache.org/core/9_1_0/core/org/apache/lucene/util/hnsw/HnswGraphSearcher.html
https://sisap-challenges.github.io/
https://big-ann-benchmarks.com/

Thank you!

14:30 - 15:20 A Survey on Approximate Nearest Neighbors in a Billion-Scale Settings Martin Aumduller

15:20-15:30 Break

15:30-16:20 Query Language for Neural Search in Practical Applications Han Xiao

Acknowledgements

» | would like to express my deep gratitude to Prof. Daichi Amagata, Naoki Ono, and Tomohiro Kanaumi for
reviewing the contents of this tutorial and providing valuable feedback.

» This work was supported by JST AIP Acceleration Research JPMJCR23U2, Japan.

Billion-Scale Nearest
Neighbor Search

CVPR 2023 Tutorial on Neural Search in Action, Part 2

Martin Aumtuller

IT University of Copenhagen, maau@itu.dk

JUNE 18-22, 2023 7 -"- lr

(VPR Al

mailto:maau@itu.dk

Martin Aumuller

Associate Professor, IT University of Copenhagen, Denmark
€ http://itu.dk/people/maau O @maumueller

v’ Similarity search using hashing
v Benchmarking & workload generation

Proceedings of Machine Learning Research 176:177-189, 2022 NeurIPS 2021 Competition and Demonstration Track
Hashing Filtering Accumulation
decrease prefix length by one Check termination criterion Results of the NeurIPS’21 Challenge on Billion-Scale
[Approximate Nearest Neighbor Search
length-i prefix 1 n =
«hy 11]] g Harsha Vardhan Simhadri® HARSHASIGMICROSOFT.COM
retrieve all s () S () S 2 - e - .
1(P1 1(Pn dist(s’ ’ o George Williams GWILLIAMS@IEEE.ORG
: ist(s"(p), s <1? ! . .
v hy [] [)|] candidates i i (5,5 (@) = Martin Aumiiller? MAAU@ITU.DK
length-i prefix _ — o I Matthijs Douze? MATTHLIS@FB.COM
! : > Artem Babenko® ARTEM.BABENKOQ@QPHYSTECH.EDU
- insert into buffer g’ . hulk® [)
su®) ~ su(Pn) compute distance S D.mltry Baranchu DBARANCHUK@YANDEX-TEAM.RL
“h [11]] ° Qi Chen! CHEQIGMICROSOFT.COM
length-i prefix Lucas Hosseini* LUCAS.HOSSEINIQGMAIL.COM
)) Ravishankar Krishnaswamy! RAKRI@MICROSOFT.COM
update.top-k if buffer is ful Gopal Srinivasa® GOPALSR@MICROSOFT.COM
deduplicate Suhas Jayaram Subramanya® SUHASJQCS.CMU.EDU
Jingdong Wang” WANGJINGDONG@BAIDU.COM
P1 Pn
! Microsoft Research 2 GSI Technology 2 IT University of Copenhagen

PUFFINN
[Aumdller+, ESA 2019]

! Meta AT Research 3 Yandex © Carneosie Mellan TTniversitv 7 Raidn

Billion-Scale ANN Challenge
[Aumdller+, NeurIPS 21, Competition] °

Queries per second (1/s)

Better Throughput

From Million-Scale to Billion-Scale ANN
Recall-Queries per second (1/s) tradeoff - up and to the right is better
o5 ‘ 1M vectors, GloVe word embeddings

=)= gsgngt
NGT-qg
NGT-panng

=@~ pynndescent
glass
hnsw(nmslib}

=@= NGT-onng
scann
Milvus(Knowhere)
vamanal(diskann)

104 1

vearch
hnswlib
flann
faiss-ivfpgfs
== 3
=== SW-graph{nmslib)
== hnsw(vespa)
== redisearch
=dl= hnswifaiss) SerV|Ce
mirpt
vald(NGT-anng)
== tinyknn
luceneknn
weaviate
=f== BallTree(nmslib)
== faiss-ivf
gdrant
annoy
==f== pgvector
== bruteforce-blas

107 1

102 1

L T rrrr T T T T rrrrr T T rrrr T T
1-1071 1-1072 1-1073 1-104

e Better Quality N """ https://github.com/erikbern/ann-benthmarks

rf=

1071

https://github.com/erikbern/ann-benchmarks

From Million-Scale to Billion-Scale ANN

Rules
* Index building + searching single-threaded

* 2 hours time limit, container killed
afterwards

Queries per second (1/s)

relax the timeout setting to 24 hours for better qps-recall performance

@ Closed

@erikbern , would you please consider relaxing the timeout setting to 24 hours? We found that for some datasets, some

algorithms (such as NGTqg and gsgNGT) cannot finish the index building stage within 2 hours, but when the timeout is set to 24

hours, they dould get very good gps-recall performance. Of course, these algorithms' disadvantage in building time will be ~
reflected in the Recall-build time performance. 24 hours of construction time is indeed a bit long, but for some offline None yet 24 h O u rS 9 24000 h O u rS 3 ye a rS

construction applications, it is acceptable to trade construction time for gps-recall performance.

None yet

Recall-Queries per second (1/s) tradeoff - up and to the right is better

asgngt
NGT-qg
2 NGT-panng
~ =@ pynndescent
glass
hnsw(nmslib)

104 4 "‘r\ \\\ =@~ NGT-onng
\.\-_' * nn
m\
>
~
-1 1

aaaaaa (diskann)
TR
== sw-graph(nmslib)

=#= hnsw{vespa)
== redisearch

hnswifaiss)
mrpt
vald(NGT-anng)
tinyknn

lucene knn

10 3 1-107! 1-1072 1-1073 1-107* 1-107°
Recall

Q: Scaling up by 1000x?
2 hours = 2000 hours ~ 83 days

(unrealistic scaling)

Billion-Scale ANN Challenge (simhadri+, NeurlPs 2021]

deep-1B

—e— FAISS-T1
KST _ANN

< PUCK-T1

--#- TEAM11

bigann-1B msturing-1B
50000 —e— BUDDY-T1 .\ —e— FAISS-T1
FAISS-T1 + KST_ANN_T1

T 40000 e KST_ANN_T1 ~me PUCK-T1
S --#- PUCK-T1 . --#- TEAM11
v .+
)
. 30000 .\
] e
@ 20000 +\
% " ¥
5 1 o k
o & -I'{L'*’*-.l + s

10000 m— #-..n.._ .#_I_—IE-

&3 I ¥+ =
~ b -
..__IH- .l+
0
0.7 0.8 0.6 0.7 0.8
Recall Recall

0.6 0.7

Recall

0.8

Many entries did not improve on baseline by much.

3 tracks:
in-memory,

out-of-memory,
"exotic hardware”

Cut-off at 10k QPS

BUILD

SEARCH

The ANN search pipeline

Data vectors

-)

Index structure (Graph, IVF, Tree)

Index
X1, X2, i, XN building
N S
~several hours
x, € RP

0.23]
3.15 Candidate
0.65 selection candidates
11.43.

q € RP

~milliseconds

<tl;dnl> (Roadmap)

Graph-based ANN

DiskANN/HNSW/...
(parameter selection difficult)

High recall?

IVF (or Graph-Based)

FAISS-IVF (better build times
Can store data + + easy parameter selection)

index in RAM?

Compressed vectors
(RAM) + graph/vectors
SSD

DiskANN

High recall?

IVF on compressed vectors

FAISS-IVF (forget original vectors)

Billion-Scale Datasets

Meta Al: Image descriptors for copy detection

Dataset Datatype Dimensions DiW Range/k-NN Base data Sample data Query data Ground truth | Release terms
BIGANN uint8 128 L2 k-NN 1B points mﬁgr:zse 10K queries link cCo
256 GB =
Facebook . : . :
SimSearchNet++* uint8 256 L2 Range 1B points N/A 100k queries link CC BY-NC
Microsoft Turing-ANNS* float32 100 L2 k-NN 1B points N/A 100K queries link link to terms
100 GB
Microsoft SPACEV* int8 100 L2 k-NN 1B points 100:1:1259 29.3K queries link O-UDA
X ’
Yandex DEEP float32 96 \ L2 k-NN 1B points 35?}21”%359 10K queries link CC BY 4.0
Yandex Text-to-Image* float32 200 \'r@er-product k-NN 1B points 50M queries | 100K queries link CCBY 4.0

800 GB

\

Microsoft Bing: Search string 2 Web documents

https://big-ann-benchmarks.com/

NeurlPS 2021 Challenge

https://big-ann-benchmarks.com/

Graph-based ANN

DiskANN/HNSW/...
(parameter selection difficult)

High recall?

IVF (or Graph-Based)

r FAISS-IVF (better build times
Can store data + + easy parameter selection)

index in RAM?

Compressed vectors
(RAM) + graph/vectors
© (SSD)
DiskANN

High recall?

IVF on compressed vectors

High Resources, High Recall

Possible setup: Multi-Socket Xeon, 256 GB - 2TB of RAM

Scaling Graph-Based Approaches

s.IR] 7 May 2023

Scaling Graph-Based ANNS Algorithms to Billion-Size Datasets:
A Comparative Analysis

Magdalen Dobson
Carnegie Mellon University
mrdobson@cs.cmu.edu

Zheqi Shen
UC Riverside
zshen055@ucr.edu

Yan Gu
UC Riverside
ygu@cs.ucr.edu

Harsha Vardhan
Simhadri

Microsoft Research

Guy E. Blelloch

Carnegie Mellon University
guyb@cs.cmu.edu

Laxman Dhulipala
University of Maryland
laxman@umd.edu

Yihan Sun
UC Riverside
yihans@cs.ucr.edu

harshasi@microsoft.com

Abstract

Algorithms for approximate nearest-neighbor search (ANNS) have
been the topic of significant recent interest in the research commu-
nity. However, evaluations of such algorithms are usually restricted
to a small number of datasets with millions or tens of millions of
points, whereas real-world applications require algorithms that
work on the scale of billions of points. Furthermore, existing evalu-
ations of ANNS algorithms are typically heavily focused on measur-
ing and optimizing for queries-per-second (QPS) at a given accuracy,
which can be hardware-dependent and ignores important metrics
such as build time.

Solving this problem is known as k-nearest neighbor search, and
is notoriously hard to solve exactly in high-dimensional spaces [18].
Since solutions for most real-world applications can tolerate small
errors, most deployments focus on the approximate nearest neigh-
bor search (ANNS) problem, which has been widely applied as a
core subroutine in fields such as search recommendations, ma-
chine learning, and information retrieval [68]. Modern applications
are placing new demands on ANNS data structures to be scalable
to billions of points [61], support streaming insertions and dele-
tions [42, 62, 66], work on a wide variety of difficult datasets [43],
and support efficient nearest neighbor queries as well as range

freal moa . o

https://arxiv.org/pdf/2305.04359.pdf

Machines

Azure Msv2 (4 Xeon, 192 vCPUs,
2 TB RAM), $S384 USD/day
Azure Ev5 (2 Xeon, 96 vCPUs,
672 GB RAM), $144 USD/day

10

https://arxiv.org/pdf/2305.04359.pdf

Scaling Graph-Based Approaches

* Recap
e Vectors are nodes

e Connected to “diverse set of
similar points” + long range edges

* Incremental build

* Use search algorithm to find
potential candidate neighbors

* Prune these candidates
Faster build?

Practically all algorithms Smaller target degree +
enforce user-set bound! smaller beam width

Index size?

Need larger beam width to
compensate for “worse
build graph”

~1B x “avg. degree of node”

Algorithm 2: insert(p, s, R, L).

Input: Point p, starting point s, beam width L, degree bound R.
Output: Point p is inserted into the nearest neighbor graph.

Parallelizing insertion

1 V, K « greedySearch(p,s,L,1)
2 Nout(p) « prune(V)
3 for g € Nou(p) do Thread-safety?
4 Nout(‘i’) — Ncul(q} U {P}
. . . 5 if [Nou:(g)| > R then
* Order all points arbitrarily ¢ | | Nowlq) — prune(Now(q))
* For each point:
* Carry out greedy search for Algorithm 3: batchBuild(?5,R L.
nearest ne|gh bor‘ |n ”CU rrent Input: Point set P, starting point s, beam width L, degree bound R.
” Output: A nearest neighbor graph consisting of all points in % and
gra ph start point s.
. 10« 0
* Connect to pruned set of vertices , while 2 < |#|do “refix doubling”
: 3 parallel for j € [27,2"*) do
found during the NN search 4 VK endSeh P ULs.L)
5 Nouwt(PLj]) « prune(‘V}

¢ | 8« UL Now(PLj])

7 parallel for b € 8 do

// Find N as all points in the current batch
that added b as their neighbors

8 N « {P[jl]Jje[2,2"*") A beNew(P[j]}
k) Nout(b) — Nout[b] UN
10 if [Noyi(b)| > R then Ny (b) « prune(Nyy (b))

11 I — i+1 12

Understanding parameters

* Index building
* Degree bound R

e upper limit on index size

 Beam width L (building)

* better neighbors
* Pruning factor (a)

» “diversified neighbors”
e Searching

* Beam width Rcaqrch

Sensitive to parameter choices &

they are difficult to choose!

DiskANN The main parameters for the Disk ANN index build are
(1) the degree bound R, (2) the beam width L used during insertion,
and (3) the pruning parameter «. In our experiments, we found that
no single parameter setting was optimal for all recall regimes, and
that there were significant tradeoffs in other recall values when
maximizing for recall above .99; thus we chose to use parameters
optimized for the .94-.97 range. Note that for TEXT2IMAGE, which
minimizes negative inner product, the « value must be less than
one in order to select for a denser graph.

1-million experiments. Due to scalability issues, we could not report
results on the 25GB experiments for HCNNG (indexing time ex-
ceeded 24 hours) and KGRAPH/DPG (could not reach an acceptable
accuracy, i.e., recall > 0.8). Due to the low performance on the 25GB
experiments of VAMANA and EFANNA (indexing a 25GB dataset
required over 300GB RAM and indexing a 100GB dataset needed
more than the 1.4TB of available memory) and NSG (since it uses
EFANNA as a base graph), we excluded them from experiments
with larger datasets.
Indexing Time. Figure 1 shows dionk X GB dataset, ELPIS can
build its index 2x and 5x faster {hap HaasW Bnd NSG, respectively,
and over an order of magnitud w hagfthe other competitors.
On the other dataset sizes, ELPIS m®Taster than its second best
competitor, HNSW. Since NSG [50] is built on top of EFANNA [48],
we include the time to build both indexing structures. Although

VAMANA [111] builds the graph based on a random initial graph,

it enende mare than 7 honre ta ecreate the Deen?25GR index Thig ic

https://www.vldb.org/pvildb/vol16/p1548-azizi.pdf

https://www.vldb.org/pvldb/vol16/p1548-azizi.pdf

Build times & scaling

BIGANN MSSPACEV TEXT2IMAGE SSNPP

Disk ANN R=64,L=128,a = 1.2 R=64,L =128, = 1.2 R=64,L=128,a=.9 R =150,L =400, = 1.2

T \) Billion-scale: Index size not more
D Beam width
egree bound than 4R GB (e.g., 256GB, 600GB)

Build Times on MSSPACEV

104]

% 1075 BIGANN MSSPACEV TEXT2IMAGE SSNPP
© 3 / DiskANN 11.0 15.1 61.6 83.1
= 5 —8— DiskANN HNSW 9.2 6.7 14.9 91.6
102 —— HNSW HCNNG 86 15.8 21.4 19.0
© 10°; HCNNG : ' - :
= —&— pyNMNDescent FAISS 5.2 4.1 4.5 4.5
10 —e— FAISS FALCONN 1.75 1.12 1.45 1.42

] ——

FALCOMN

Table 1: Build times (hours) on billion-scale datasets.

10° 101 102 103
Dataset Size (millions)

10x increase = 11-12x build time increase
14

Parallelizing search

e Usually parallelization over
queries (inter-query parallelism) QPS on MSSPACEV

—8— DiskANN

—&— HNSW

750000_ HCNNG

"\ —8— pyNNDescent
500000 A —8— FAISS

—8— FALCONN

250000 \\

—

04 ® —————o = |

10° 101 102 103
Dataset Size (millions)

* Not so much in focus

e Beam width selection: “trial-
and-error”

Queries per Second

(b) QPS for fixed recall (.8) as dataset size in-

creases.
Scaling: dataset 1000x larger = queries 2x slower

summary

* Advantages
* Good scaling of #candidates

* Unparalleled performance in high-
recall regime

* Disadvantages

* Influence of parameter choices
difficult to predict

* High index building times (but
“almost out-of-box”)

1% of dataset

0.01% of dataset

Dthance Comparisons on MSSPACE

-

2 10° 4

>

O _ —e— DiskANN

e] —8— HNSW

& 4 .,/ HCNNG 0.0001% of dataset

wn 10] —8— pyNNDescent

g' —e— FAISS

O —e— FALCONN

o

10—
10° 101 102 103

Dataset Size (millions)

(c) Distance comparisons per query for fixed
recall (.8) as the dataset size increases.

HOW tO get Sta rted [DiskANN: Simhadri+, NeurIPS19]

import numpy as np

DiSkANN import diskannpy

class diskann:
def fit(self, ds, L, R):
. . """Build index for dataset “ds’ with "R* degree, 'L beam width."""
FROM ubuntu: jammy é diskannpy.build_memory_index(
data = ds.get_dataset_fn(),

distance_metric = '12',
RUN apt update vector_dtype = np.ints,
RUN apt install -y software-properties-common complexity=L,
RUN add-apt-repository -y ppa:git-core/ppa graph_degree=R,
RUN apt update num_threads = 64,
RUN DEBIAN_FRONTEND=noninteractive apt install -y git alpha=1.2,

use_pq_build=False,
num_pq_bytes=8, #irrelevant given use_pq_build=False
use_opg=False

make cmake g++ libaio-dev libgoogle-perftools-dev
libunwind-dev clang-format libboost-dev
libboost-program-options-dev libmkl-full-dev

libcpprest-dev python3.10)

print('Loading index..')

RUN git clone https://github.com/microsoft/DiskANN.git self.index = diskannpy.StaticMemoryIndex(

WORKDIR /home/app/DiskANN distance_metric = '12°,

RUN pip3 install virtualenv build vector_d;ype = np.ints,

RUN python3 -m build num_threads = 64, #to allocate scratch space for up to 64 search threads
RUN pip install dist/diskannpy-©.5. initial_search_complexity = 100

@-cp310-cp3108-1linux_x86_64.whl)

WORKDIR /home/app print('Index ready for search')

def query(self, X, k, Ls):
""YCarry out a batch query for k-NN of query set X."""
self.res, self.query_dists = self.index.batch_search(X, k, Ls, 64)

Official Documentation: 17

Python examples:

https://github.com/Microsoft/DiskANN
https://github.com/harsha-simhadri/big-ann-benchmarks

Graph-based ANN
DiskANN/HNSW/...

High recall?

e
Ty

IVF (or Graph-Based)

FAISS-IVF (better build times
+ easy parameter selection)

Compressed vectors
(RAM) + graph/vectors
(SSD)

IVF on compressed vectors

High Resources, Low Recall

Possible setup: Multi-Socket Xeon, 256 GB - 2TB of RAM

18

IVF-based solutions (“inverted file index”)

2 steps:

(1) Train partition
(2) Add vectors

. J._#,;""f)
f,,.-*' S ___'_7_ .,.-#"“"N'
N
X1, X5, e, XN \
* N
f. II
/S | .
x, € RP / |
f—; || —p-
/ L

Finding a space partition: Clustering-based (k-means), LSH-based, ...

IVF: Insert a vector

Record x4

V

1.027

0.73
0.56

) ,« .
1.37 y
1.37 y \/
072! S
xl ;;’{ : |I
i || —p
/ W

Cells: all points closest to given centroid (“Voronoi cells”)
Build parameter: #clusters

IVF: search

Find the nearest vector to LU

10.547

f{f;________’_ .J__#..,..,
2.35 :
0.82 _ \ | /
0.42) I|
0.14 f.-‘f . || .
L0.32-);’r I|
q ;'; || —lp-
£ A

Search parameter: #clusters to inspect
Candidates: #clusters inspected * avg. cluster size

How to choose parameters?

e Goal: inspect 0.0001% of dataset
for 1B vectors = 1000 points

* Back-of-the-envelope calculation:

e ~1000 points per cluster
.
e = need a million clusters

* Making this practical
e Build an index on centroids

e Standard solution
* Build a graph on top of the centroids
e Alternatives: hierarchical k-means

1% of dataset 0.01% of dataset

Diztance Comparisons on MSSPACEl/

v

>

g 10° 4
>

O _ —e— DiskANN

o | ~®— HNSW

a g / HCNNG 0.0001%| of dataset
3 10] —8— pyNNDescent l
e _ —e— FAISS

O . —e— FALCONN

o

2103 0 == >

10° 101 102 103
Dataset Size (millions)

(c) Distance comparisons per query for fixed
recall (.8) as the dataset size increases.

22

IVF-based approaches

* Advantages

* Predictable index size and
relatively easy to understand
parameters

* Strong implementations available

* GPU-based solutions
* Disadvantages

* Many candidates necessary in the

high-recall regime

* Quantization necessary to limit

impact of these distance
computations

yueries per second

= =t =t =
o [=] [=] [=]
w rY] o

(=
=]
CE]

I SO
e T,
.. ‘_}’
\ u
-H--H"'I-__
1-\-"1-
i
0.2 0.4 0.6 0.8 1.0

Jueries per second

Rarall 1010

(a) BIGANN-1B

0.2 0.4 0.6 0.8

Rarall 10m10

(b) MSSPACEV-1B

23

1.0

Great documentation with code examples!
https://github.com/facebookresearch/faiss/wiki

How to get started?

* Install via conda install -c pytorch faiss-cpu

nlist = 1ee
k = 4
quantizer = faiss.IndexFlatL2(d) # the other index

index = faiss.IndexIVFFlat(quantizer, d, nlist)
assert not index.is_trained

index.train(xb) Index factories available!
assert index.is_trained

index.add(xb)
D, I = index.search(xq, k)
print(I[-5:]) # neighbors of the 5

index.nprobe = # default nprobe is 1,

D, I = index.search(xq, k)
print(I[-5:]) # neighbors of the 5

https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index

24

https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index

Graph-based ANN
DiskANN/HNSW/...

(parameter selection difficult)

High recall?

IVF (or Graph-Based)

FAISS-IVF (better build times
Can store data + + easy parameter selection)

index in RAM?

Compressed vectors
(RAM) + graph/vectors
(SSD)
DiskANN

~
I IVF on compressed vectors

Billion-Scale ANN with limited
resources

25

Interlude: Vector Quantization

Quantization techniques

BIGANN MSSPACEV TEXT2IMAGE SSNPP
DiskANN R=64,L =128, ¢ = 1.2 R=64,L =128, a =1.2 R=64,L =128, = .9 R =150,L =400, x = 1.2
HNSW m=32,efc=128,a=.82 | m=32,efc=128,a=.83 | m=32,efc=128,a =1.1 | m =75, efc = 400, a = .82
HCNNG T =30,Ls =1000,s =3 T =50,Ls =1000,s =3 T =30,Ls =1000,s =3 T =50,Ls =1000,s =3
pyNNDescent K =40,Ls = 100, K =60, Ls = 100, K =60,Ls =100, K =60, Ls = 1000,
T=10,a=1.2 T=10,aa=1.2 T=10,aa=.9 T=10,aa=1.4
OPQ64_128, OPQ64_128, OPQ64_128, OPQ64_128,
FAISS IVF1048576 HNSW32, IVF1048576 HNSW32, IVF1048576 _HNSW32, IVF1048576 HNSW32,
PQ128x4fsr ™ PQ64x4fsr PQ128x4fsr PQ64

&

Cluster with 1M centroids, using

HNSW to index the centroids

27

Basic idea

MO0

2.35
D 0.82

0
O
Q.
™

A[0.54] |

ylo.a2] 1.

3.34

0.83
0.62

11.45.

‘apoa‘ @

» Need 4ND byte to represent N real-valued vectors
using floats

» If N or D is too large, we cannot read the data on memory
v’ E.g.,512GBforD = 128,N = 10°

» Convert each vector to a short-code

» Short-code is designed as memory-efficient
v' E.g., 4 GB for the above example, with 32-bit code

> Run search for short-codes

28

D

0.54]]

2.35
0.82

10.421 L1.

0
o
Q.
™

Basic idea

2)

‘apoa‘ @

3.34

0.83

10.62
1.45

> Need AND hute to renrecent N real-valiied vectaore

What kind of conversion is preferred?

1. The “distance” between two codes can be

calculated
2. The distance can be computed quickly
3. That distance approximates the distance

between the original vectors (e.g., L)

the above three criteria

4. Sufficiently small length of codes can achieve

29

Quantization Techniques

* Low precision
» work with fp16 instead of 32/64 bit floats

« Scalar quantization Interval [0,3] split up into 6 parts
* split up [min, max] into K equidistant parts

10.54 1]
————+ 23 |’
T N T 0.82 1
min width max -0-4‘2- -0-

* (binary/locality-sensitive) Hashing
* Apply hashing to embed into lower dimensional space

* Product quantization

Product Quantization; PQ pégou+, TramI 2011]
» Split a vector into sub-vectors, and quantize each sub-vector

A

vector; x

r0.347
0.22
0.68
1.02
0.03

L0.71-

ID: 1
0.13
0.98
ID: 1
0.3
1.28

|

Codebook

ID: 2 ID: 256
032] ... l1.03
0.27 0.08
ID: 2 ID: 256
0.35] . l0.99]
0.12 1.13

Trained beforehand by
k-means on training data

31

Product Quantization; PQ pégou+, TramI 2011]
» Split a vector into sub-vectors, and quantize each sub-vector

A

vector; x

0.34°
0.22
0.68
1.02
0.03

L0.71-

ID: 1
0.13
0.98
ID: 1
0.3
1.28

|

Codebook

ID: 2 ID: 256
032] ... l1.03
0.27 0.08
ID: 2 ID: 256
0.35] . l0.99]
0.12 1.13

Trained beforehand by
k-means on training data

32

Product Quantization; PQ pégou+, TramI 2011]
» Split a vector into sub-vectors, and quantize each sub-vector

A

vector; x

0.34°
0.22
0.68
1.02
0.03

L0.71-

} -

Codebook
D:1 (1D:2 1
0.131}0.327; "'l
0.981110.271)
ID: 1 ID: 2
03] a3ﬂ .[
1.281 10.12

D: 256
1.031

0.08

D: 256
0.99]

1.13

——{p.2 |4

Trained beforehand by
k-means on training data

PQ-code; x

33

Product Quantization; PQ pégou, Trami 2011

» Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

k-means on training data

vector; x Codebook
] 1 D:1 (1D:2 1 ID: 256 i .=
1 0.34 } - | [0:13 :6%%: l1.03 | PQ-code; X
|
ez e B PR
0.63 0.3 7 [0.35 ; | 10.99 D:123 || M
D 1.02 = 1.28] 0_12] :_E l1.13] T
0.03 v
v L0.71-

Product Quantization; PQ pégou, Trami 2011

» Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

vector; x i Codebook k-means on training data
1 N I s
U
D 1.02 } = 1-?8] 0:12] U l1:13] +1D: 123 M
0.03 :r'i ID: 87 ||
v L0.71- L |] J

Product Quantization; PQ pégou, Trami 2011

» Split a vector into sub-vectors, and quantize each sub-vector
Trained beforehand by

vector: x i Codebook k-means on training data

Ar 1 ID: 1 {--;-\l ID: 256) L=
Uen - | [0.13 110,321, v [103]. PQ-code; x
0.22 0.98]1l0.271! 0.08 \iID- > A
0.68 ID:1 ID:2 :'": ID: 256 : M

' 0.371[0.35 0.99 _
D 1.02 } = 1-28] 0.12] J:_E 1.13] 31D: 123

0.03 :‘"’: ID: 87 ||

v L0.71- :_E

» Simple

Bar notation for PQ-code:

» Memory efficient X€ERP & Xe(l,..,2561M
» Distance can be estimated y

Product Quantization: Memory efficient

A

vector; x

0.34°
0.22
0.68
1.02
0.03

L0.71-

}
}

-

-

Codebook

D:1 (1D:2 1 ID: 256) L

0.13110.3211 ... l1_03 | PQ-code; x

0981027} " lo.osl T— [5 5]4

ID:1 ID:2 If"’: ID: 256 :

0.37710.35] 4,,4 (099 .

1.28] 0_12] ! ! 1_13] >1D: 123
o IID: 87 \

-
—

37

Product Quantization: Memory efficient

vector; x Codebook

Ar 1 ID: 1 {--;-\l ID: 256) L=

0.34 } - | [0:13 :6[.)3§ L 103]. PQ-code; X
|
0.68 0.3 7 [0.35 ; | 10.99 1o M
D 1.02 e 1.28] 0.12] :_E 1.13] 31D: 123
0.03 :‘"’: ID: 87 ||
i
float: 3261t v0.71) L X |

e.g., D =128

128 x 32 = 4096 [bit]

38

Product Quantization: Memory efficient

vector; x

0.34°
0.22
0.68
1.02
0.03

A

D

float: 32bit V

eg., D =128

Codebook

D:1 (1D:2 1 ID: 256 i =
0.137170.327; ... l1.o3 _ PQ-code; x
0.98!1l0.271! 0.08 \iID'2 A
ID:1 ID:2 :’"’: ID: 256 . M
0.37170.35] . .110.99 .
1.28] 0.12] : ! 1.13] 1D: 123

N v

I .

! E uchar: 8bit

128 X 32 = 4096 [bit]

eg., M =28
8 X 8 = 64 [bit]

39

Product Quantization: Memory efficient

Can store all 1B vectors with 8 GB of RAM!

vector; X COdEbOOk

A 110134

D:1 [1D:2 : ID: 256 PQ-code; ¥

m | [0.13 io.32: . [1.037
0.22 % [0.98]lg.g7_, _[0.08 \iID:2 A

ID: 256

0.68 ID:1 ID:2 o
D\ |50zl 5 = |l 633 4467 Jip:123 | | M
0.03] (D:8D) |
1 .} |
float: 32bit v \ . J uchar: 8bit

eg., D =128
128 X 32 = 4096 [bit]

40

Product Quantization: Distance estimation
Database vectors

Query; g € RP
0.34
0.22
0.68
1.02
0.03
0.71

X1
0.54
2.35
0.82
0.42
0.14
0.32

X2
0.62
0.31
0.34
1.63
1.43
0.74

XN
3.34
0.83
0.62
1.45
0.12
2.32

Product Quantization: Distance estimation
Database vectors

Query; g € R X1 X, Xy
0.34 0.54710.62 3.34
0.22 2.35]110.31 0.83
0.68 0.82]10.34| — 10.62
1.02 0.42]]1.63 1.45
0.03 0.14]1.43 0.12
0.71 0.324 L0.74 2.32

Product
guantization

Product Quantization: Distance estimation

Query; g € RP
0.34
0.22
0.68
1.02
0.03
0.71

BT

ID: 99

X1 X2
ID: 42 ID: 221
ID: 67 ID: 143
ID: 92 ID: 34

ID: 234

ID: 3

43

Product Quantization: Distance estimation

Query; q € R

0.34 .
N
0.22 | mm
Linear ID: 42 ID: 221 ID: 99
0.63 | =l ID: 67 ||ID:143| -+ |ID:234
1 02 Through
. Candidates ID: 92 ID: 34 ID: 3
0.03
0.71 Asymmetric distance

> d(g, x)? can be efficiently approximated by d (g, x)?
» Lookup-trick: Looking up pre-computed distance-tables

» Candidate selection by d,

import numpy as np NOt pSGUdO COdeS

from scipy.cluster.vqg import vqg, kmeans?Z
from scipy.spatial.distance import cdist

def train(vec, M): def search(codeword, pgcode, query):
Ds = int (vec.shape[l] / M) # Ds =D / M M, _K, Ds = codeword.shape
codeword[m] [k] = c' # dist_table = D(m,k)
codeword = np.empty ((M, 256, Ds), np.float32) dist_table = np.empty ((M, 256), np.float32)
for m in range (M) : for m in range (M) :
vec_sub = vec[:, m # Ds : (m + 1) = Ds] query_sub = query[m = Ds: (m + 1) = Ds]
[

codeword[m], label = kmeans?2 (vec_sub, 256) dist_table[m, :] = cdist([query_sub],

— codeword[m], ’sgeuclidean’)[0] # Egq. (5)

return codeword
Eq. (6)

N dist = np.sum(dist_table[range (M), pgcode], axis=1)

def encode (codeword, vec): # vec = {xn.hzl

M, _K, Ds = codeword.shape
pgcode[n] = i(x,), pgcode[n][m] = i"(Xn)
pacode = np.empty ((vec.shape[0], M), np.uint8)

return dist

if _ name_ == "_ main_ ":
for m in range(M): # Egq. (2) and Eq. (3) # Read vec_train, vec ({xn})_;), and query (y)
vec_sub = vec[:, m » Ds: (m + 1) =* Ds] M= 4
pgcode[:, m], dist = vg(vec_sub, codeword[m]) codeword = train(vec_train, M)
pagcode = encode (codeword, vec)
return pgcode dist = search(codeword, pgcode, query)

print (dist)

» Only tens of lines in Python
» Pure Python library: nanopq https://github.com/matsui528/nanopq
» pip install nanopg

45

https://github.com/matsui528/nanopq

Rotate vectors to allow for

better product quantization

[Ge+14]

BIGANN MSSPACEV TEXT2IMAGE SSNPP
DiskANN R:64,L:128,y{:1.2 R=64,L =128, a =1.2 R=64,L =128, = .9 R =150,L =400, x = 1.2
HNSW m = 32, efc = 12/5,1:15: 82 | m=32,efc=128,a=.83 | m=32,efc=128,a =1.1 | m =75, efc =400, a = .82
HCNNG TZSU,LSZ}/UU{],SZS T =50,Ls =1000,s =3 T =30,Ls =1000,s =3 T =50,Ls =1000,s =3
pyNNDescent K = 4[?/5 = 100, K =60, Ls = 100, K =60,Ls =100, K =60, Ls = 1000,
T=10,=1.2 T=10,aa=1.2 T=10,aa=.9 T=10,aa=1.4
OPQ64_128, OPQ64_128, OPQ64_128, OPQ64_128,
FAISS IVF1048576 HNSW32, IVF1048576 HNSW32, IVF1048576 _HNSW32, IVF1048576 HNSW32,
PQ128x4fsr NS PQ64x4fsr PQ128x4fsr PQ64

Compress vector into 128

blocks,

each with 224 =16

codewords,
use SIMD-based
asymmetric distance
computation [Andre+17]

Cluster with 1M centroids, using

HNSW to index the centroids

BUILD

SEARCH

The ANN search pipeline

Data vectors

-)

Index structure (Graph, IVF, Tree)

Index
X1, X2, e, XN building
N S
~several hours
x, € RP

0.23]
3.15 Candidate
0.65 selection candidates
11.43.

q € RP

~milliseconds

BUILD

SEARCH

The ANN search pipeline (with quantization)

Data vectors

building

~several hours

Index structure (Graph, IVF, Tree)

10.23]
3.15
0.65

11.43.

q € RP

Candidate
selection

~milliseconds

candidates
by code

Typically 10-100x more quantized vectors than target

10.20]
3.25
0.72

11.68.
X74

Index on Quantized Vectors

SCANN: Guo+, ICML 2020.

dataset glove

®— Faiss raw
-~— SCANN raw

* Learn codes, represent each vector S T e,
by its PQ code

* Code size: 32-64 byte

* Can store the compressed vectors in

Metric: Inner Product

* Lookup tables in cache/avx registers ¢
* Index cost on top

e Graph: 1G * degree_bound
* Typically requires small degree_bounds

\
!
|
(not well studied?)

* IVF: 1M centroids + index on =
centroids on top of vectors

i |
e Usually works well Recall quality very data dependent!

https://github.com/facebookresearch/faiss/wiki/Indexing-1M-vectors

https://github.com/facebookresearch/faiss/wiki/Indexing-1M-vectors

Out-of-Memory index + High-Recall (DiskANN)

in-memory

x, € RP

K-means (k=40)

ASSign each vector o
to its closest 2 —
centroids

dSS UO 2401S pue 3349A

dataset size

DiskANN out-of-memory 55D +512 GB graph
RAM / R = 128 degree \
32+ GB
4 7)
ID: 42 ~32byte
ID: 67 /vector l
ID: 92
k) Memory layout for vector x;
Xi |V1 YR
Expanding a node:
1. Read adjacent nodes from SSD Original vector Neighbor indices,
(+ fetch original vector “for free”) Padded if < R neighbors
2. Compute distances of query to neighbors
(using PQ codes) 1 block read from SSD

Still serves 1k+ queries per second \ /

51

(Very) recent developments

A new graph approach?

* Hierarchical tree, leaves are HNSW
graphs

* Interesting quantization technique
motivated by time series

* Better build times, good query
performance

ELPIS: Graph-Based Similarity Search
for Scalable Data Science

Nias Azizi Karima Echihabi Themis Palpanas
UMB6P, Université Paris Cité UM6P Université Paris Cité & IUF
ilias.azizi@umép.ma karima.echihabi@umé6p.ma themis@mi.parisdescartes.fr

ABSTRACT

The recent popularity of learned embeddings has fueled the growth
of massive collections of high-dimensional (high-d) vectors that
model complex data. Finding similar vectors in these collections
is at the core of many important and practical data science ap-
plications. The data series community has developed tree-based
similarity search techniques that outperform state-of-the-art meth-
ods on large collections of both data series and generic high-d
vectors, on all scenarios except for no-guarantees ng-approximate
search, where graph-based approaches designed by the high-d vec-
tor community achieve the best performance. However, building

systems of online billion-dollar enterprises [76, 117], and enabled
information retrieval [123], classification [37, 96] and outlier detec-
tion [11-14, 75, 88, 89]. Similarity search has also been exploited in
software engineering [3, 85] to automate API mappings and predict
program dependencies and I/O usage and in cybersecurity to profile
network usage and detect intrusions and malware [31].

Similarity search finds the most similar objects in a dataset to a
given query object. It is often reduced to k-nearest neighbor (k-NN)
search, which represents the objects as points in R space, and re-
turns the k closest vectors in the dataset S to a given query vector Vg
according to some distance measure, such as the Euclidean distance.

To appear at VLDB 2023,
https://www.vldb.org/pvidb/vol16/p1548-azizi.pdf

53

https://www.vldb.org/pvldb/vol16/p1548-azizi.pdf

Automated Parameter tuning

* Finding build/search parameters
by constrained optimization

* Build on top of ScaNN

AUTOMATING NEAREST NEIGHBOR SEARCH CONFIG-
URATION WITH CONSTRAINED OPTIMIZATION

Philip Sun, Ruiqi Guo & Sanjiv Kumar

Google Research

New York, NY

{sunphil, guorqg, sanjivk}@google.com

ICLR23

ABSTRACT

The approximate nearest neighbor (ANN) search problem is fundamental to ef-
ficiently serving many real-world machine learning applications. A number of
techniques have been developed for ANN search that are efficient, accurate, and
scalable. However, such techniques typically have a number of parameters that
affect the speed-recall tradeoff, and exhibit poor performance when such parame-
ters aren’t properly set. Tuning these parameters has traditionally been a manual
process, demanding in-depth knowledge of the underlying search algorithm. This
is becoming an increasingly unrealistic demand as ANN search grows in popu-

X,: Level 2 PQ
4 -10* x 12.5 bytes; ~ 500KB

1

2\?’2: Level 2 Centroids (1int8)
4-10* x 100 bytes; ~ 4MB

Xs3: Level 1 PQ
4-10% x 17 bytes; ~ 68MB

i

2\?4: Level 1 Centroids (1int8)
4-10% x 100 bytes; ~ 400MB

Xs: Dataset PQ
109 x 50 bytes; ~ 50GB

]

Dataset (1nt 8, not stored)
10? x 100 bytes; ~ 100GB

(b) Microsoft Turing-ANNS

7

Speed (Queries per Second)

A

80000

70000

w B O
[T e o O
[T = | o 9
[T e | (o R = |
Lo R [N = |

20000

10000

0

0.6

0.65

0.7 0.75 0.8 0.85
Accuracy (Recall@10)

(b) Microsoft Turing-ANNS

54

Filtered search

* Setting

e \Vectors have
associated metadata

* Example, YFCC: tags,
gps, date

* Query
* Find the most similar
images to this images
that were taken with a
Sony Camerain 2017
in Vancouver

database

freight
country_GB

year_2007 month_July
camera_Canon country_GB
ukrail tankers loco orton
tanks workhorse trainspotting
johngreyturner horsepower
haul britishrail rail
locomotive diesel machine
railway british freight work
power

camera_Canon country_GB
kpa derbyshire transport
rolling rail peak wagon
britain stock railway british
freight forest train

55

Out-of-distribution queries

* Setting

* Vectors are image embeddings
* Queries are text embeddings

80000 |r

FAISS —&—
@ 70000 § Puck —

S QOurs —l—

o 60000 [
(7]

]
€ 50000

st

a b
1]
£ 40000
g 2
=3 '!'
& 30000 -I‘
®
10000 |- ¢ o,
0 E | | | 1 1 1

0.05 0.1 015 0.2 025 03 035 0.4
Accuracy (Recall@10)

d

5

o 20000 |
(=8

(c) Yandex Text-to-Image

https://arxiv.org/pdf/2301.01702.pdf

QPS

10° -
A1
A}
A |
i
A
A1
\
]
]
\
\
1
[]
|
]
|
1
u
4 | 1
107 1
1
I
0
]
1
1
1
1
]
1
I .
| -#- Textual queries
[Image queries
0.1 0.2 0.3 0.4 0.5 0.6
10-recall@10

OPQ64_128,IVF16384,PQ64

Yandex, Text-2-Image dataset

56

https://arxiv.org/pdf/2301.01702.pdf

Streaming settings

* Setting

* Many applications (search
engine, recommender
system) need to handle
updates

* Daily rebuilds often too
expensive

* Question: Clever update
strategies?

Index Size

Web Search & Reco

~1 trillion pages

Email Search

100s of trillions of
sentences

Enterprise search

Trillions of paragraphs
across documents

Update Rate
(latency <1s)

Billions of updates/day

Ingest new email,
Purge deletes

Handle >1% change/day

Search
latency/QPS

<10ms
10-100K+ Queries/sec

100s of ms

10-100ms

https://harsha-simhadri.org/pubs/ANNS-talk-Sep22.pptx

57

https://harsha-simhadri.org/pubs/ANNS-talk-Sep22.pptx

NeurlPS 2023 Challenge: Practical Vector Search

e 4 Tasks (10|V| vecto rs) Practical Vector Search Challenge 2023
* Filtered ANN
: Harsha Vardhan Simhadri* Martin Aumiiller
¢ St rea min g A N N Microsoft Research India IT University of Copenhagen
. . . harshasi@microsoft.com maau@itu.dk
* QOut-of-distribution ANN
Dmitry Baranchuk Matthijs Douze Edo Liberty
Yande Meta Al Research Pinecone.io
° A N N O n S p a rs e d ata dbaranchuk@yan;ex—team. ru matthij s@mesta.tcom edo@;l)iz_:;corie .io
L St ro n g b a S e | i n e S b a Se d O n I V F Amir Ingber Frank Liu George Williams
Pinecone.io Zilliz Independent Researcher

(fa iSS) a n d g ra p h S (D i S kA N N) ingber@pinecone.io frank.liu@zilliz.com gwilliams@ieee.org

* Cloud credits available for Officia
testing (screening process) announcement

soon!

https://big-ann-benchmarks.com

Timeframe: JuIy-NovemIc5>8er 2023

Graph-based ANN

(parameter selection difficult)

High recall?

IVF (or Graph-Based)

FAISS-IVF (better build times

Can store data + + easy parameter selection)
index in RAM?
Compressed vectors
. (RAM) + graph/vectors
\ (SSD)

DiskANN

High recall?

Thanks!

IVF on compressed vectors

https://matsui528.github.io/cvpr2023 tutorial neural_search/

https://big-ann-benchmarks.com

Berlin - Beijing - Shenzhen

AAAAAAAAAAAAAAAA

Representing,
transiting &
sedrching
multimodal data

Han Xiao, Founder of Jina Al
W @hxico [@JinaAl_

https://twitter.com/hxiao

About me & Jina Al

Han Xiao, Founder & CEO of Jina Al. Based in Berlin, Germany.

ML PhD in 2014 TU Munich; Zalondo Research; Tencent Al Lab; Creator
of Fashion-MNIST.

Jina Al

Founded in 2020, focus on multimodal Al search & create
Opensource contributor: Jina, DocArray (Linux Foundation),
CLIP-as-servics, ..

60 people, HQ in Berlin. Offices in Beijing, Shenzhen.

A|30
DAC

EXCBINSIGHTS

100 100

BECBINSIGHTS

Jina Al Tech Spectrum

the deployment of fine-tuned models in a
production environment, usually requiring
substantial resources such as GPU hosting.
MLOps, emphasizing the serving of mid-size to
large models in a scalable, efficient, and reliable
manner.

Model serving

Prompt tuning

the process of crafting and refining the input
prompts in order to guide its output towards
specific, desired responses.

Also known as fine-tuning, involves adjusting the
parameters of a pre-trained model on a new,
often task-specific dataset to improve its
performance and adapt it to a specific

application.

Model tuning

Prompt serving

wrapping and serving prompts through an AP,
without hosting heavy models. The API calls a
public large language model service and handles
the orchestration of inputs and outputs in a chain
of operations.

yine Prompt tuning

© PromptPerfect

SceneX
Model serving —0 A Prompt Serving
A Jina+DocArray LC-serve

Rationale
A Jcloud 2

Inference API

A OpenGPT ¢
L 4

*

@® Finetuner

Model tuning

Agenda

- Preliminary: multimodal Al

- Opensource package: DocArray
- Motivation

Representing data

Transiting data

Storing data

Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+
concepts like data classes could be helpful.

Preliminary:
from unimodal to multimodal

Unimodal Al

Before 2021

2022

Creative Al

Multimodal

A

Y

Cross-modal

Neural search

Future

From unimodal to multimodal

‘'modality’ roughly means "data type".

- Unimodal Al refers to applying Al to one specific type of data.

- Most early machine learning works fall into this category.

- Even today, when you open any machine learning literature,
unimodal Al is still the majority of the content.

Unimodal - NLP

LDA was the 2010's transformer

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co.,New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make amark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.000 each. The Juilliard School, where music and
the performing arts are taught, will get $250.000. The Hearst Foundation. aleading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100.000
donation, too.

JMLR: Workshop and Conf P ings 13: 63-78
2nd Asian Conference on Machine Learning (ACML2010), Tokyo, Japan, Nov. 8-10, 2010.

Efficient Collapsed Gibbs Sampling For Latent Dirichlet
Allocation

Han Xiao XIAOH@IN.TUM.DE
Thomas Stibor STIBOR@IN.TUM.DE
Department of Informatics

Technical University of Munich, GERMANY

Editor: Masashi Sugiyama and Qiang Yang

Abstract

Collapsed Gibbs sampling is a frequently applied method to approximate intractable inte-
grals in probabilistic generative models such as latent Dirichlet allocation. This sampling
method has however the crucial drawback of high computational complexity, which makes
it limited applicable on large data sets. We propose a novel dynamic sampling strategy to
significantly improve the efficiency of collapsed Gibbs sampling. The strategy is explored
in terms of efficiency, convergence and perplexity. Besides, we present a straight-forward
parallelization to further improve the efficiency. Finally, we underpin our proposed im-
provements with a comparative study on different scale data sets.

Keywords: Gibbs sampling, Optimization, Latent Dirichlet Allocation

1. Introduction

Latent Dirichlet allocation (LDA) is a generative probabilistic model that was first pro-
posed by Blei et al. (2003) to discover topics in text documents. LDA is based on the

Unimodal tasks in NLP

Adhoc methods for NLP problems

Unimodal - CV

Fashion-MNIST, 2017

=—==3 i

B P=—=—s=s)

I B e —

t (D Deses

1Bim=={‘f(‘ £l

e = oms BRI ED——=a290m)|

e R i
, DD BT

]

A.AJ_,_
Tl

P
X

d =)

§=Jeaam

M
i
"
A
Q&

N A e e

[, B e-smE=S

.

=

ﬁibﬁﬁG&Q-ﬂuii
iy e e) g S, o i @ g ™ | iy B i SR
REESEmBesfiicO e . @ESUos g
VWYEYY VNI VES VYUY IV IYIYEY Y

BAPALLE) =S PDAPAASBAALSnNAnRuT

)7747v2 [cs.LG] 15 Sep 2017

Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms

Han Xiao Kashif Rasul
Zalando Research Zalando Research
MiihlenstraBe 25, 10243 Berlin Miihlenstrae 25, 10243 Berlin
han.xiao@zalando.de kashif.rasul@zalando.de

Roland Vollgraf
Zalando Research
MiihlenstraBe 25, 10243 Berlin
roland.vollgraf@zalando.de

Abstract

We present Fashion-MNIST, a new dataset comprising of 28 x 28 grayscale
images of 70,000 fashion products from 10 categories, with 7,000 images
per category. The training set has 60,000 images and the test set has
10,000 images. Fashion-MNIST is intended to serve as a direct drop-
in replacement for the original MNIST dataset for benchmarking machine
learning algorithms, as it shares the same image size, data format and the
structure of training and testing splits. The dataset is freely available at
https://github.com/zalandoresearch/fashion-mnist.

Unimodal tasks in CV

Scene
understanding

Object classification

Image

segmentation Object tracking

and detection Action recognition

Texture recognition

Stereo vision s }
and classification

3D reconstruction Pose estimation Depth estimation

Object recognition
in video

Facial recognition
and identification

Human activity Image
recognition super-resolution

Material recognition

Video frame
interpolation

Multiple object

tracking in 3D akadd

Neural style transfer

Image inpainting

Visual Modality

Unimodal tasks in speech & audio

Speech

Speaker
Enhancement

Recoghnition Speaker Diarization

Automatic Speech

Recognition Text-to-Speech

Music Tempo
Estimation

Music Structure
Segmentation

Music Artist
Recognition

Music Genre
Recognition

Music
Recommendation

Audio Scene
Recognition

Sound Event
Localization

Sound Event
Classification

Sound Event
Detection

Audio Source
Separation

Voice Activity
Detection

Emotion Silence Detection

Recognition

Audio Captioning Speech Translation

Acoustic Modality

Unimodal know-how are hardly transferable

Natural language

Sentiment analysis Text classification Topic modeling Text summarization G

Named entity Word sense Parts-of-speech Grammatical

recognition disambiguation tagging parsing Rlocpezay ety

Information
extraction

Semantic role Part-of-speech Co-reference . Sentence
labeling induction resolution Ricpelnissctich segmentation
Textual Modality
.
Acoustic = -
S L3 i

recognition
Material recognition S0
- BARans

Visual Modality

fextuc vual acoustc ee).

e Knowledge is learned from and applied to sic S
only one modality (i.e. a visual algorithm can Recogniton

. . udio Captionin Emoton eech Translation VI 6 Silence Detection

only learn from and be applied to images).

Question answering Spam filtering Language modeling Dialog systems

e Tasks are specific to just one modality (e.g.

Acoustic Modality

A detour: cross-modal model

NIPS 2010, Cross-LDA

Toward Artificial Synesthesia:
Linking Images and Sounds via Words

Han Xiao, Thomas Stibor
Department of Informatics
Technical University of Munich
Garching, D-85748
{xiaoh, stibor}@in.tum.de

Abstract

‘We tackle a new challenge of modeling a perceptual experience in which a
stimulus in one modality gives rise to an experience in a different sensory
modality, termed synesthesia. To meet the challenge, we propose a probabilistic
framework based on graphical models that enables to link visual modalities and
auditory modalities via natural language text. An online prototype system is
developed for allowing human judgement to evaluate the model’s perfon'nance
Experimental results indicate and of the

1 Introduction

A picture of a golden beach might stimulate human’s hearing, probably, by imagining the sound of
waves crashing agams[the shore. On the other hand, the sound of a baaing sheep might ﬂlusu'atc
a green hillside in front of your eyes. In this kind of experience is termed

That is, a perceptual experience in which a stimulus in one modality gives rise to an expenence in
a different sensory modality. Without a doubt, the creative process of humans (e.g. painting and
composing) is to a large extent attributed to their ‘While ory
links snch ac connd and vicion are anite common to himans machines do not nossese the same

Sound

Explicit linking z
31
£

0 ’H]T

: me
1.5. BACH VIOLIN Sk

<—>| COMPOSER |[<—>| STRING _|<—>3
VIOLINIST INSTRUMENT g
Implicit linking via text &

.
Time

Input

Feature extraction

Build codebook

Represent each
image into a bag
of visual word

%D Feed data into
E probabilistic
] topic model

caption

|

Y

|

LA

A h N 0™
N\ ygeee() 3

Training

Represent each
sound into a bag of
auditory word

caption

£ ‘\) 2
, N , N p N
_ Corr-LDA) (_ WordNet) (_ Corr-LDA)

Testing

Unknown Image

O
NA
v

—~—X_

Unknown Sound

AN
) [\

\\ YAV, ’ !

&

AN OA A
LOLO LG HAT AN
A h, A A, AN
W W O

AT
QOO -«

|

oAl
Tk Rk @

QOO---

|

Probabilistic topic model)

|

~

Ja

Predicted sound

Predicted image

uo1eIUasaIdal 29 UOTORIIXD AINJED

QoudIaJu]

Figure 2: Probabilistic framework for performing the image composition and sound illustration task. The
framework is an extension based on the work flow proposed in [8]. Images and sounds are represented in
bags-of-words, so that the difference between the two modalities can be omitted. Once we have the algorithm
for inferring sounds from an image, we can apply it to infer images from a sound by mirroring the algorithm.

Erase the boundary between modalities

Acoustic

Tasks are shared and transferred between multiple modalities (so
one algorithm can work with images and text and audio).
Knowledge is learned from and applied to multiple modalities (so an
algorithm can learn from textual data and apply that to visual data).

Paradigm shift from unimodal to multimodal

The rise of multimodal Al can be attributed to advances in two machine
learning techniques: Representation learning and transfer learning.

- Representation learning lets models create common representations

for all modalities.
- Transfer learning lets models first learn fundamental knowledge, and

then fine-tune on specific domains.

CLIP, DALLE, BLIP, Bark, GPT4

We will see more and more Al
applications move beyond @ @
one data modality and

leverage relationships A% ")) A
between different modalities

r‘#} Before n ‘#K After
L

= =

. [}
e e
® .

“An artificial intelligence system
trained on words and sentences
alone will never approximate
human understanding.”

Y. Lecun in 2022 in Al And The Limits Of Language

Multimodal Al is the future,
but the ML ecosystem is hot yet
suited for it.

Agenda

- Preliminary: multimodal Al

- Opensource package: DocArray
- Motivation

Representing data

Transiting data

Storing data

Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+
concepts like data classes could be helpful.

DocArray for
representing, transiting,
storing, searching
multimodal data

Representing multimodal data is a pain

- Lack of common interface for different modalities makes it difficult to
work with multiple modalities at the same time.
- No easy way to represent unstructured and nested multimodal data.

Lack of common interface

’.. 'Preprocess | ‘Compute | 'Storage |
o) " - ibros redis
| T

Video I TensorFlow drant
E . O PyTorch ®
a Image i - Milvus
L i O learn Ann($te

F 4 s <. Tokenizer | .

m. Text | spaCy SQLite

1 1
. [¥) Transformers |
1 1

JAS. XX .
e >
a1 elasticsearc h

No easy way to represent
unstructured nested multimodal data

=1 e Unstructured
document
e Nested content
‘ e Different modalities
=

(text, image, ...)

DocO

DocArray way of representing multimodal

data

By the Way A Post Travel Destination

Everything to know about flying
with pets, from picking your seat to
keeping your animal calm

By Nathan Diller

from docarray import dataclass, Docume
from docarray.typing import Image, Text, .

@dataclass

class WPArticle:
banner: Image
headline: Text
meta: JSON

a = WPArticle(
banner='dog-cat-flight.png',
headline="'Everything to know about f1l
meta={

'author': 'Nathan Diller',
‘column': 'By the Way — A Post Tr
Wi

doc = Document(a)

Frequent data transfer over network is
expensive

Multimodal data is processed by multiple models and models are usually deployed in a
distributed way.

Data at rest

Inactive data under very

occasional changes, stored Active data under constant Traversing a network or
physically in database, change, stored physically in temporarily residing in
warehouse, spreadsheet, database, warehouse, computer memory to be
archives, etc. spreadsheet, etc. read or updated

Performant serialization is important

DocArray is designed to be “ready-to-wire” at anytime.

JSON string: .from_json() /.to_json()
o Pydantic model: .from_pydantic_model() /.to_pydantic_model()

Bytes (compressed): .from_bytes() /.to_bytes()

o Disk serialization: .save_binary() /.load_binary()

Base64 (compressed): .from_base64() /.to_base64()

Protobuf Message: .from_protobuf() /.to_protobuf()

Python List: .from_list() /.to_list()

Pandas Dataframe: .from_dataframe() /.to_dataframe()

Cloud: .push() [.pull()

Binary serialization optimized for in-transit &
at-rest

Size in MB on 1M Docs

pickle-array, no-compress
pickle-array, |z4
pickle-array, gzip
protobuf-array, no-compress
protobuf-array, 1z4
protobuf-array, gzip

pickle, no-compress
pickle, 1z4

pickle, gzip

protobuf, no-compress
protobuf, 1z4

protobuf, gzip

0 100 200 300 400 500

Binary serialization optimized for in-transit &
at-rest

Time cost in seconds on 1M Docs

[Serialization time (s) [Deserialization time (s)

pickle-array, no-compress E 85
pickle-array, 1z4 4.2

pickle-array, gzip

11.0

protobuf-array, no-compress

protobuf-array, 1z4 28.4

protobuf-array, gzip

pickle, no-compress

Arguments

pickle, 1z4
pickle, gzip
protobuf, no-compress

protobuf, 1z4

protobuf, gzip

0 10 20 30

Storing nested data with databases is
complicated

- Complex and nested schema are not directly supported in
databases

- Explosion in numbers of vector databases with different APIs but no
universal client

DocArray way of storing data

o DocArray Storage

from docarray import DocumentArray, Document

DocumentArray(storage="milvus',

config={'connection': 'example.db'})

6 with da:
da.append(Document())
8 da.summary()

DocArray way of storing data

o DocArray Storage
from docarray import DocumentArray, Document

da = DocumentArray(storage="'milvus',
config={'connectio ‘'mivius’
‘qdrant’
5 with da: 'weaviate’
da.append(Document()) ‘elasticsearch'
da.summary() 'redis’

‘opensearch’
‘annlite’
‘sqlite’

Jine

Vector Search via a consistent API

locarray Document, DocumentArra

numpy

13 result = da.find(np.array([2, 2, 2]), limit=6)

Jine

Vector Search via a consistent API

Vector

. Vector search .
Name Construction Filtel
search +

Filter
In memory DocumentArray ()
dim, - SQLite DocumentArray(storage='sqlite') X X
Weaviate DocumentArray(storage='weaviate')
Qdrant DocumentArray(storage='qdrant"')

13 result = da.find(np.array([2, 2, 2]), limit=6

StILE (R \ AnnLite DocumentArray(storage="annlite')
ElasticSearch DocumentArray(storage='elasticsearch"')
Redis DocumentArray(storage="'redis"')

Milvus DocumentArray(storage='milvus')

Quick Recap

It's like JSON, but for intensive computation.

It's like numpy.ndarray, but for unstructured data.

It's like pandas.DataFrame, but for nested and mixed media data with embeddings.
It's like Protobuf, but for data scientists and deep learning engineers.

Jina DocArray numpy . ndarray JSON pandas.DataFrame Protobuf

Q u ic k R Tensor/matrix data X v
|

Text data X
T
L4 It's like JSOI Media data X X X X
e It'slike nurr
PY It's like pan: Nested data X X ings,
e It's like Prot:
Mixed data of the above four X X X X
Easy to (de)serialize X
Data validation (of the output) X X X
Pythonic experience X v X
10 support for filetypes X X X X
Deep learning framework support X X X
multi-core/GPU support v X X X

Rich functions for data types X X X

Hands-on DocArray

Install DocArray

To install DocArray (0.33), you can use the following command:

pip install "docarray[full]"

https://docs.docarray.org/

For old DocArray, more compatibility and features

pip install "docarray[full]"==0.21

https://docs.docarray.org/

Representing data - Document

At the heart of DocArray lies the concept of BaseDoc.

The following Python code defines a Bannerpoc class that can be used to represent the data of a website banner:

from docarray import BaseDoc
from docarray.typing import ImageUrl

class BannerDoc(BaseDoc) :
image_url: ImageUrl
title: str
description: str

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc

Representing data - Document

You can then instantiate a BannerDoc object and access its attributes:

banner = BannerDoc(
image_url="https://example.com/image.png"',
title="Hello World',
description='This is a banner',

)
assert banner.image_url == 'https://example.com/image.png’
assert banner.title == 'Hello World'

assert banner.description == 'This is a banner'

Representing multimodal data with nested
structure

Let's say you want to represent a YouTube video in your application, perhaps to build a search system for YouTube
videos.

A YouTube video is not only composed of a video, but also has a title, description, thumbnail (and more, but let's
keep it simple).

*
All of these elements are from different modalities: 2“2‘ Ircnds
the title and description are text, .
)~

the thumbnail is an image,

CONFUSED_____
; ; : : MILLENNIAL DESIGNER
and the video itself is, well, a video. el Tk
DocArray lets you represent all of this multimodal data \ Year in Review: 2021 in Graphic Design
in a single object. Linus Boman @

119K views « 1 year ago

Representing multimodal data with nested
structure

First for the thumbnail image:

from docarray import BaseDoc
from docarray.typing import ImageUrl, ImageBytes

class ImageDoc(BaseDoc):
url: ImageUrl
bytes: ImageBytes = (
None # bytes are not always loaded in memory, so we make it optional

)

Representing multimodal data with nested
structure

Then for the video itself:

from docarray import BaseDoc
from docarray.typing import VideoUrl, VideoBytes

class VideoDoc(BaseDoc):
url: VideoUrl
bytes: VideoBytes = (
None # bytes are not always loaded in memory, so we make it optional

)

Representing multimodal data with nested
structure

All the elements that compose a YouTube video are ready:

from docarray import BaseDoc

class YouTubeVideoDoc(BaseDoc) :
title: str
description: str
thumbnail: ImageDoc
video: VideoDoc

Representing multimodal data with nested
structure

All the elements that compose a YouTube video are ready:

You see here that ImageDoc and VideoDoc are also

BaseDoc, and they are later used inside another
from docarray import BaseDoc BaseDoc’. This is what we call nested data

representation.
BaseDoc can be nested to represent any kind of data
class YouTubeVideoDoc(BaseDoc) : hierarchy.
title: str
description: str
thumbnail: ImageDoc
video: VideoDoc

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc

Representing multimodal data with nested
structure

All the elements that compose a YouTube video are ready:

You see here that ImageDoc and VideoDoc are also
BaseDoc, and they are later used inside another

from docarray import BaseDoc BaseDoc'. This is what we call nested data
representation.

BaseDoc can be nested to represent any kind of data

class YouTubeVideoDoc(BaseDoc) : hierarchy.
title: str
description: str This representation can be used to send or
thumbnail: ImageDoc store data. You can even use it directly to
video: VideoDoc train a machine learning Pytorch model on

this representation.

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/user_guide/sending/first_step/
https://docs.docarray.org/user_guide/storing/first_step/
https://docs.docarray.org/how_to/multimodal_training_and_serving/
https://pytorch.org/docs/stable/index.html

Recap: representing multimodal data

- 'Dataclass’ look and feel, for defining the structure
- Strong typing, for defining modality

- Python built-in types
- Numpy types
- URI types
- Text
- Image
- Audio
- Video
- Mesh3D
- PointCloud3D
- Tensor types
- ImageTensor
- AudioTensor
- VideoTensor
- Embedding
- Optionall]

from docarray impotrt BaseDoc
from docarray.typii

s

class ImageDoc(BaséDoc) :

url:|ImageUrl
bytes: ImageBytes = (
None # bytes are not

)

ng import ImageUrl, ImageBytes

g

lways loaded in m

Representing an array of multimodal data

The fundamental building block of DocArray is the BaseDoc class which represents a single document, a single
datapoint.

However, in machine learning we often need to work with an array of documents, and an array of data points.

We introduce

e Doclist which is a Python list of BaseDocs
e DocVec which is a column-based representation of BaseDocs

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da_stack/#docarray.array.doc_vec.doc_vec.DocVec

Jine

Example of DoclList

First you need to create a Doc class, our data schema. Let's say you want to represent a banner
with an image, a title and a description:

from docarray import BaseDoc, Doclist
from docarray.typing import ImageUrl

class BannerDoc(BaseDoc) :
image: ImageUrl
title: str
description: str

Example of DoclList

First you need to create a Doc class, our data schema. Let's say you want to represent a banner
with an image, a title and a description:

from docarray import BaseDoc, Doclist
from docarray.typing import ImageUrl

cl Let's instantiate several BannerDoc S:

banner1 = BannerDoc(
image="https://example.com/imagel.png',
title="'Hello World',
description="'This is a banner',

)

banner2 = BannerDoc(
image="'https://example.com/image2.png',
title='Bye Bye World',
description='This is (distopic) banner',

Jine

Example of DoclList

DocList and DocVec are both AnyDocArrays. The following section will use DocList as an example, but the same applies to DocVec.

You can now collect them into a DocList of BannerDoc S:

docs = DoclList[BannerDoc]([banner1, banner2])

docs.summary ()

— Doclist Summary ——

| |
| Type DocList[BannerDoc] |
| Length 2 |
| |
(J

—— Document Schema ——

| |
| BannerDoc |
| F— image: ImageUrl |
| | title: str |
| |
| |
L J

L— description: str

Example of DoclList

You can access documents inside it with the usual Python array API:

print(docs[0])

BannerDoc(image="https://example.com/imagel1.png', title='Hello World', description:

or iterate over it:

for doc in docs:
print(doc)

BannerDoc(image='https://example.com/imagel.png', title='Hello World', description:
BannerDoc(image="'https://example.com/image2.png', title='Bye Bye World', descriptic

Accessing member attribute at array level

At the document level:

print(banner1.image)

https://example.com/imagel.png'
At the Array level:

print(docs.image)

["https://example.com/imagel.png', 'https://example.com/image2.png']

Accessing member attribute at array level

At the document level:

print(banner1.image)

https://example.com/imagel.png'
At the Array level: You can even access the attributes of the nested BaseDoc at the Array level:

print(docs.image) print(docs.banner.image)

['https://example.com/imagel.png', 'hi ['https://example.com/imagel.png', 'https://example.com/image2.png']
This is just the same way that you would do it with BaseDoc:

print(pagel.banner.image)

"https://example.com/imagel.png'

Jine

Doclist[DocType] syntax

DocList[DocType] creates a custom DocList that can only contain DocType
Documents.

Non-typing Doclist for Strong-typing Doclist for
heterogeneous data homogeneous data

from docarray import BaseDoc, DoclList

try:
from docarray.typing import ImageUrl, AudioUrl 2/

docs :[DocList[ImageDoc}(]
[
class ImageDoc(BaseDoc): ImageDoc(url="https://example.com/imagel.png'),
url: ImageUrl AudioDoc(url="https://example.com/audiol.mp3")

]

)

except ValueError as e:
print(e)

class AudioDoc(BaseDoc) :
url: AudioUrl

docs = DocList(
[ValueError: AudioDoc(
ImageDoc(url="https://example.com/image1.png'), id='e286b10f5853348a092846010206441",
AudtobacUElSEhEtRs i/ exanple con/Sudicl jnps) url=AudioUrl('https://example.com/audiol.mp3', host_type='domain")
)) is not a <class '__main__.ImageDoc'>

https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList

Doclist vs DocVec

DocList is based on Python Lists. You can append, extend, insert, pop, and so on. In DocList, data is individually
owned by each BaseDoc collect just different Document references.

Use DocList when you want to be able to rearrange or re-rank your data. One flaw of DocList is that none of the
data is contiguous in memory, so you cannot leverage functions that require contiguous data without first copying

the data in a continuous array.

DocVec is a columnar data structure. DocVec is always an array of homogeneous Documents. The idea is that
every attribute of the BaseDoc will be stored in a contiguous array: a column.

https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da_stack/#docarray.array.doc_vec.doc_vec.DocVec

Doclist vs DocVec

Let's say you want to embed a batch of Images:

def embed(image: NdArray['batch_size', 3, 224, 224]):

Doclist vs DocVec

from docarray import BaseDoc
from docarray.typing import NdArray

class ImageDoc(BaseDoc):
image: NdArray|
3, 224, 224
] = None # [3, 224, 224] this just mean we know in advance the shape of the t¢

Doclist vs DocVec

from docarray import BaseDoc
from docarray.typing import NdArray

class |
im: from docarray import DoclList

import numpy as np

docs = DocList[ImageDoc](

[ImageDoc(image=np.random.rand(3, 224, 224)) for
)

embed (np.stack(docs.image))

embed (np.stack(docs.image))

in range(10)]

Doclist vs DocVec

from docarray import BaseDoc
from docarray.typing import NdArray

class ImageDoc(BaseDoc):

image:
% from docarray import DocVec
IF=RNE import numpy as np

11
2
3
4 docs = DocVec[ImageDoc](

5 [ImageDoc(image=np.random.rand(3, 224, 224)) for _ in range(10)]
6

7

8

)

embed(docs.image)

Access the view of Documentin DocVec

If you access a document inside a bocvec you will get a document view. A document view is a view of the columnar
data structure which looks and behaves like a Baseboc instance. It is a Baseboc instance but with a different way to
access the data.

from docarray import DocVec

docs = DocVec|ImageDoc](
[ImageDoc (image=np.random.rand(3, 224, 224)) for _ in range(10)]
)

my_doc = docs[0]

assert my_doc.is_view() # True
whereas with DoclList:

docs = Doclist[ImageDoc](

[ImageDoc(image=np.random.rand(3, 224, 224)) for in range(10)]

)
my_doc = docs[0]

assert not my_doc.is_view() # False

Access the view of Documentin DocVec

If you access a document inside a bocvec you will get a document view. A document view is a view of the columnar
data structure which looks and behaves like a Baseboc instance. It is a Baseboc instance but with a different way to
access the data.

you should use DocVec when you need to work with
contiguous data, and you should use DocList when
you need to rearrange or extend your data.

doc DocList[ImageDoc](

[ImageDoc(image=np.random.rand(3, 224, 224)) for _ in range(10)]
)
my_d docs[0]

Storing & retrieving via Vector Database

from d ray import DocList, B
from docarray.index import Hr
import numpy as
5 from docarray.typing import ImageUrl, Image 0r,

class ImageDoc(BaseDoc):

embedding: NdA [128]

= DocList[I sDoc] (
[
(

url="https://upload.wikimedia.org/wikipedia/commons/2/2f/Alpamayo. jpg",
> =np.zeros((3, 224, 224)),
=np.random.random((128,)),

)
for in range(100)
]
)
= HnswDocumentIndex[ImageDoc](work_dir='/tmp/test_index2')
ex.index(dl)

ﬁ‘~, SCC = index.find(ry, limit=10, sea eld="'embedding')

Storing & retrieving via Vector Database

Document Index: ORM for vector DBs

Document Index provides a unified interface to a number of vector databases.
You can think of Document Index as an ORM for vector databases.
Currently, DocArray supports the following vector databases:

Weaviate | Docs

Qdrant | Docs

Elasticsearch v7 and v8 | Docs
HNSWIib | Docs

*Old DocArray v0.21 supports Milvus, Redis, Opensearch

https://learn.microsoft.com/en-us/semantic-kernel/concepts-ai/vectordb
https://sqlmodel.tiangolo.com/db-to-code/
https://weaviate.io/
https://docs.docarray.org/user_guide/storing/index_weaviate/
https://qdrant.tech/
https://docs.docarray.org/user_guide/storing/index_qdrant/
https://www.elastic.co/elasticsearch/
https://docs.docarray.org/user_guide/storing/index_elastic/
https://github.com/nmslib/hnswlib
https://docs.docarray.org/user_guide/storing/index_hnswlib/

Construct a HNSWDocumentindex

To use HnswDocumentindex, you need to install extra dependencies with the following command: pip install "docarray[hnswilib]"

To create a Document Index, you first need a document that defines the schema of your index:

from docarray import BaseDoc
from docarray.index import HnswDocumentIndex
from docarray.typing import NdArray

class MyDoc(BaseDoc) :
embedding: NdArray[128]
text: str

db = HnswDocumentIndex[MyDoc] (work_dir="'./my_test_db")

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex

Construct a HNSWDocumentindex

To use HnswDocumentindex, you need to install extra dependencies with the following command: pip install "docarray[hnswilib]"

In this code snippet, HnswDocumentIndex takes a
To create a Document Index, you first need a document th gchema of the form of Myboc. The Document Index

then creates a column for each field in MyDoc.

from docarray import BaseDoc
from docarray.index import HnswDocumentIndgx
from docarray.typing import NdArray

class MyDoc(BaseDoc) :
embedding: NdArray[128]
text: str

db = HnswDocumentIndex[MyDoc] (work_dir="'./my_tes

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex

Construct a HNSWDocumentindex

To use HnswDocumentindex, you need to install extra dependencies with the following command: pip install "docarray[hnswilib]"

In this code snippet, HnswDocumentIndex takes a
To create a Document Index, you first need a document th gchema of the form of Myboc. The Document Index

then creates a column for each field in MyDoc.

from docarray import BaseDoc
from docarray.index import HnswDocumentIndex
from docarray.typing import NdArray

The column types in the backend database are
determined by the type hints of the document's
fields. Optionally, you can customize the database
types for every field.

class MyDoc(BaseDoc) :
embedding: NdArray[128]
text: str

db = HnswDocumentIndex[MyDoc] (work_dir="'./my_tes

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations

Construct a HNSWDocumentindex

To use HnswDocumentindex, you need to install extra dependencies with the following command: pip install "docarray[hnswilib]"

In this code snippet, HnswDocumentIndex takes a
To create a Document Index, you first need a document th gchema of the form of Myboc. The Document Index

then creates a column for each field in MyDoc.
from docarray import BaseDoc

from docarray.index import HnswDocumentIndex
from docarray.typing import NdArray

The column types in the backend database are
determined by the type hints of the document's
fields. Optionally, you can customize the database
types for every field.

class MyDoc(BaseDoc): Most vector databases need to know the
embedding: NdArray[128] «————— " dimensionality of the vectors that will be stored.
text: str Here, that is automatically inferred from the type hint
of the embedding field: NdArray[128] means that the

database will store vectors with 128 dimensions.
db = HnswDocumentIndex[MyDoc] (work_dir="'./my_tes

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations

Index data

Now that you have a Document Index, you can add data to it, using the index() method:

import numpy as np
from docarray import DoclList

create some random data
docs = DoclList[MyDoc](
[MyDoc (embedding=np.random.rand(128), text=f'text {i}') for i in range(160)]

)

index the data
db.index(docs)

Index data

Now that you have a Document Index, you can add data to it, using the index() method:

import numpy as np
from docarray import DoclList

create some random data
docs = DoclList[MyDoc](
[MyDoc (embedding=

ndom.rand(128), text=f'text {i}'

As you can see, DoclList[Myboc] and

from docarr ort BaseDoc HnswDocumentIndex[MyDoc] are both

from docarray.index t_HnswDocume parameterized with vypoc. This means
from docarray.typing import that they share the same schema, and in
general, the schema of a Document
Index and the data that you want to
store need to have compatible schemas

index the data
db.index(docs)

class MyDoc(BaseDoc) :
embedding: NdArray[128]
text: str

db = HnswDocumentIndex[MyDoc] (work_dir="./my_test_db")

Vector search

Search by Document Search by raw vector

create a query Document
query = MyDoc(embedding=np.random.rand(128), text='query')

find similar Documents
matches, scores = db.find(query, search_field='embedding', limit=5)

print(f'{matches=}")
print(f'{matches.text=}")
print(f'{scores=}")

Vector search

Search by Document Search by raw vector Search by Document Search by raw vector

create a query Document # create a query vector

query = MyDoc(embedding=np.random.rand(128), text='query') query = np.random.rand(128)

find similar Documents # find similar Documents

matches, scores = db.find(query, search_field='embedding', limit=5) matches, scores = db.find(query, search_field='embedding', 1limit=5)
print(f'{matches=}") print(f'{matches=}")

print(f'{matches.text=}") print(f'{matches.text=}")

print(f'{scores=}") print(f'{scores=}")

Vector search

Search by Document Search by raw vector

create a query Document
query = MyDoc(embedding=np.random.rand(128), text='query')

find similar Documents
matches, scores = db.find(query, search_field='embedding', limit=5)

print(f'{matches=}")

print(f'{matches.text=}")
print(f'{scores=}")

Search by Documents Search by raw vectors

create some query Documents
queries = DoclList[MyDoc](

MyDoc (embedding=np.random.rand(128), text=f'query {i}') for i in range(3)
)

find similar Documents
matches, scores = db.find_batched(queries, search_field='embedding', 1limit=5)

print(f'{matches=}")
print(f'{matches[@].text=}")
print(f'{scores=}")

Search by Document Search by raw vector

create a query vector
query = np.random.rand(128)

find similar Documents
matches, scores = db.find(query, search_field='embedding'

print(f'{matches=}")
print(f'{matches.text=}")
print(f'{scores=}")

, limit=5)

Vector search

Search by Document Search by raw vector

create a query Document

query = MyDoc(embedding=np.random.rand(128), text='query')

find similar Documents

matches, scores = db.find(query, search_field='embedding', limit=5)

print(f'{matches=}")
print(f'{matches.text=}")
print(f'{scores=}")

Search by Documents Search by raw vectors

create some query Documents
queries = DoclList[MyDoc](

MyDoc (embedding=np.random.rand(128), text=f'query {i}') for i in range(3)

)

find similar Documents

matches, scores = db.find_batched(queries, search_field='embedding', 1limit=5)

print(f'{matches=}")
print(f'{matches[@].text=}")
print(f'{scores=}")

Search by Document Search by raw vector

create a query vector
query = np.random.rand(128)

find similar Documents

matches, scores = db.find(query, search_field='embedding'

print(f'{matches=}")
print(f'{matches.text=}")
print(f'{scores=}")

Search by Documents Search by raw vectors

create some query vectors
query = np.random.rand(3, 128)

find similar Documents

, limit=5)

matches, scores = db.find_batched(query, search_field='embedding', limit=5)

print(f'{matches=}")
print(f'{matches[0].text=}")
print(f'{scores=}")

Hybrid search through the query builder

Document Index supports atomic operations for vector similarity search, text search and filter search.

To combine these operations into a single, hybrid search query, you can use the query builder that is accessible
through build_query():

prepare a query
g_doc = MyDoc(embedding=np.random.rand(128), text='query')

query = (
db.build_query() # get empty query object
.find(query=q_doc, search_field='embedding') # add vector similarity search

.filter(filter_query={'text': {'Sexists': True}}) # add filter search
.build() # build the query

execute the combined query and return the results
results = db.execute_query(query)
print(f'{results=}")

https://docs.docarray.org/API_reference/doc_index/doc_index/#docarray.index.abstract.BaseDocIndex.build_query

Customize vector DB configuration

db = HnswDocumentIndex[MyDoc] (work_dir="/tmp/my_db")

db.configure(
default_column_config={
np.ndarray: {

dam s =1,
"index': True,
'space': 'ip',

‘'max_elements': 2048,
"ef_construction': 100,

Yefit N5

‘M': 8,
‘allow_replace_deleted' : True,
‘num_threads': 5,

None: {},

pine 1 from docarray.typing import Imac

Indexing and e

jeUrl, VideoUrl,

tensor: AnyTensor = Field(space='cosine', dim=64)

searching

10 class VideoDoc(BaseDoc):

mUItimOdal data R S N leld(space='cosine’, dim=128)
In the fo”OW|ng example you can see a , class YouTubeVideoDoc(BaseDoc):

itle: str

complex schema that contains nested
Documents. The vouTubevideoDoc contains a
VideoDoc @and an ImageDoc, alongside some
"basic" fields:

oc(u

* , index [-
2021 rrends
OF N~

CONFUSED

np.ones(256),

MILLENNIAL DESIGNER)
REACTS:______\WTF? for i in range(8)

- Year in Review: 2021 in Graphic Design

Linus Boman @
119K views * 1 year ago 39 doc_1index.index(index_docs)

ld(space='cosine', dim=256)

lex[YouTubeVideoDoc](work_dir="'/tmp2"')

tion=f'this is video from author {10*i}',

l=f'http://example.ai/images/{1}',

(url=f'http://example.ai/videos/{i}',

€

sor=np.ones(64)),
=np.ones(128)),

Indexing and searching multimodal data

You can perform search on any nesting level by using the dunder operator to specify the field defined in the
nested data.

2 query_doc = Ygufut%VLHequa(
le=f'video query',

ription=f'this i1s a query video',
‘ mageDoc(url=f'http://example.ai/images/1024"', sor=np.ones(64)),
Vi eoDoc(url=f'http://example.ai/videos/1024"', tensor=np.ones(128)),
tensor=np.ones(256),

—_

1 docs, scores = doc_1index.find(query_doc, search_field='tensor'

Il

1 docs, scores = doc_index.find(query_doc, search_field='thumbnail__tensor', limit=3)

’ docs, scores = doc_index.find(query_doc, search_field='video__tensor', limit=3)

class ImageDoc(B)oc):

pine
r = | (='cosine', dim=64)
L o
Nested Doclist with
5 i
mages: st[ImageDoc] -
'Ib."dex i : 1sor = Field(='cosine', dim=128)
s I class MyDoc(BaseDoc):
)cs: Do t[oc]
- ¢ AnyTensor = Field(e='cosine', dim=256)

Documents can be nested by containing a pocList of other
documents, which is a slightly more complicated scenario S5 e e M (e e
than the previous one.

5 = [
(
ycs=Doc [leoDoc](
D (
. . . l=f'http://example.ai/videos/{i}-{j}',
In this case, the nested DoclList will be represented as a new 2 fesehee L eegehoe
sub-index (or table, collection, etc., depending on the i P
database backend), that is linked with the parent index T
(table, collection, ...). g enimhgei
> Do
=np.ones(128),
)
for in range(10)
]

s50r=np.ones(256),
)

for 1 in range(10)

x.index(index_docs)

Search by subindex

1 # find by the VideoDoc tensor

2 root_docs, sub_docs, scores = doc_index.find_subindex(

3 np.ones(128), subindex='docs', search_field='tensor_video', limit=3

4)

5

6 # find by the "ImageDoc tensor

7 root_docs, sub_docs, scores = doc_index.find_subindex(

8 np.ones(64), subindex='docs__images', search_field='tensor_image', limit=3
9)

10

Transiting data over network

3 from do

Sending via REST API/JSON -> Backend: FastAPI

import numpy as np
from fa)1 import FastAPI
rray.base_doc import DocArrayResponse
from docarray import BaseDoc

5 from docarray.documents import ImageDoc
6 from docarray.typing import NdArray

8 class InputDoc(Ba

3 class OutputDoc(B

21 @app.post("/embed/", re
22 async def create_item(doc:

seDoc):

img: ImageDoc

text: str

er ding_clip: N

doc = OutputDoc(

embedding_clip=e

return doc

Sending via gRPC/ws -> Backend: Jina microservice

Transiting data over network

Sending via REST API/JSON -> Backend: FastAPI Sending via gRPC/ws -> Backend: Jina microservice

import numpy as np

from fastapi import FastAPI

from docarray.base_doc import DocArrayResponse
from docarray import BaseDoc

from docarray.documents import ImageDoc

from docarray.typing import NdArray

U WNRF

)

class InputDoc(BaseDoc):
img: ImageDoc
10 text: str

O

13 class OutputDoc(BaseDoc):
14 embedding_clip: NdArray
15 embedding_bert: NdArray

8 app = FastAPI{)

async with AsyncClient(app=app, base_url="http://test") as ac:

21 @app.post("/e .
response = await ac.post("/doc/", data=docs.to_json())

async def cre
(|

doc = Out
embed

N
w N =

S

assert response.status_code == 200

) 5 . i i
return do 6 docs = DocList[TextDoc].from_json(response.content.decode())

NNNNRNNN
oO~NOUL A W

Transiting data over network

Sending via gRPC/ws -> Backend: Jina microservice

4

1
2
3
5
7

o)

O

9
10
11

2
v 4

=)
]

14

class WhisperExecutor(Executor):

def __1init__(self, device: str, *args, **kwargs):
super().__init__(*args, **kwargs)

self.model = whisper.load_model("medium.en", device=device)

@requests
def transcribe(self, docs: DocList[AudioURL], **kwargs) -> DocList[Response]:
response_docs = DocList[Response]()
for doc in docs:
transcribed text = self.model.transcribe(str(doc.audio))['text']
response_docs.append(Response(text=transcribed_text))

return response_doc

Transiting data over network

Sending via gRPC/ws -> Backend: Jina microservice

1
2
3
<
5)
6
7
8

9
10
1kl
15
13
14

class WhisperExecutor(Executor):

def __1init__(self, device: str, *args, **kwargs):

super().

init__(*args, **kwargs)

self.model = whisper.load_model("medium.en", device=device)

@requests

def transcribe(self, docs: DocList[AudioURL], **kwargs) -> DocList[Response]:

response_docs = DocList[Respa
for doc in docs:
transcribed _text = self.m
response_docs.append(Resp

return response_doc

1
2

0o ~NOY U B W

= =
[<]

12
13

dep = Deployment(
uses=WhisperExecutor, uses_with={'device': "cpu"}, port=12349,
timeout_ready=-1

)

with dep:
docs = d.post(
on='/transcribe',
inputs=[AudioURL(audio="'resources/audio.mp3')],
return_type=DocList[Response],

)

print(docs[0].text)

Agenda

- Preliminary: multimodal Al

- Opensource package: DocArray
- Motivation

Representing data

Transiting data

Storing data

Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+
concepts like data classes could be helpful.

An end to end example

https://docs.docarray.org/how to/multimodal training _and_serving/

https://docs.docarray.org/how_to/multimodal_training_and_serving/

Berlin - Beijing - Shenzhen

Thanks for
your
attentlon

& jina.qi

0 @JinoAl_
¥ hanxico@jina.ai

	0_opening
	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8

	1_graph
	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15
	スライド 16
	スライド 17
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23
	スライド 24
	スライド 25
	スライド 26
	スライド 27
	スライド 28
	スライド 29
	スライド 30
	スライド 31
	スライド 32
	スライド 33
	スライド 34
	スライド 35
	スライド 36
	スライド 37
	スライド 38
	スライド 39
	スライド 40
	スライド 41
	スライド 42
	スライド 43
	スライド 44
	スライド 45
	スライド 46
	スライド 47
	スライド 48
	スライド 49
	スライド 50
	スライド 51
	スライド 52
	スライド 53
	スライド 54
	スライド 55
	スライド 56
	スライド 57
	スライド 58
	スライド 59
	スライド 60
	スライド 61
	スライド 62
	スライド 63
	スライド 64
	スライド 65
	スライド 66
	スライド 67
	スライド 68
	スライド 69
	スライド 70
	スライド 71
	スライド 72
	スライド 73
	スライド 74
	スライド 75
	スライド 76
	スライド 77
	スライド 78
	スライド 79
	スライド 80
	スライド 81
	スライド 82
	スライド 83
	スライド 84
	スライド 85
	スライド 86
	スライド 87
	スライド 88
	スライド 89
	スライド 90
	スライド 91
	スライド 92
	スライド 93
	スライド 94
	スライド 95
	スライド 96
	スライド 97
	スライド 98
	スライド 99
	スライド 100
	スライド 101
	スライド 102
	スライド 103
	スライド 104
	スライド 105
	スライド 106
	スライド 107
	スライド 108
	スライド 109
	スライド 110
	スライド 111
	スライド 112
	スライド 113
	スライド 114
	スライド 115
	スライド 116
	スライド 117
	スライド 118
	スライド 119
	スライド 120
	スライド 121
	スライド 122
	スライド 123
	スライド 124
	スライド 125
	スライド 126
	スライド 127
	スライド 128
	スライド 129
	スライド 130
	スライド 131
	スライド 132
	スライド 133
	スライド 134
	スライド 135
	スライド 136
	スライド 137
	スライド 138
	スライド 139
	スライド 140
	スライド 141
	スライド 142
	スライド 143
	スライド 144
	スライド 145
	スライド 146
	スライド 147
	スライド 148
	スライド 149
	スライド 150
	スライド 151
	スライド 152
	スライド 153
	スライド 154
	スライド 155
	スライド 156
	スライド 157
	スライド 158
	スライド 159
	スライド 160
	スライド 161
	スライド 162
	スライド 163

	billion_scale_ann
	Slide 1: Billion-Scale Nearest Neighbor Search
	Slide 2
	Slide 3: From Million-Scale to Billion-Scale ANN
	Slide 4: From Million-Scale to Billion-Scale ANN
	Slide 5: Billion-Scale ANN Challenge [Simhadri+, NeurIPS 2021]
	Slide 6: The ANN search pipeline
	Slide 7: <tl;dnl> (Roadmap)
	Slide 8: Billion-Scale Datasets
	Slide 9: High Resources, High Recall
	Slide 10: Scaling Graph-Based Approaches
	Slide 11: Scaling Graph-Based Approaches
	Slide 12: Parallelizing insertion
	Slide 13: Understanding parameters
	Slide 14: Build times & scaling
	Slide 15: Parallelizing search
	Slide 16: Summary
	Slide 17: How to get started (DiskANN)
	Slide 18: High Resources, Low Recall
	Slide 19: IVF-based solutions (“inverted file index”)
	Slide 20: IVF: insert a vector
	Slide 21: IVF: search
	Slide 22: How to choose parameters?
	Slide 23: IVF-based approaches
	Slide 24: How to get started?
	Slide 25: Billion-Scale ANN with limited resources
	Slide 26: Interlude: Vector Quantization
	Slide 27: Quantization techniques
	Slide 28
	Slide 29
	Slide 30: Quantization Techniques
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: The ANN search pipeline
	Slide 48: The ANN search pipeline (with quantization)
	Slide 49: Index on Quantized Vectors
	Slide 50: Out-of-Memory index + High-Recall (DiskANN)
	Slide 51: DiskANN out-of-memory
	Slide 52: (Very) recent developments
	Slide 53: A new graph approach?
	Slide 54: Automated Parameter tuning
	Slide 55: Filtered search
	Slide 56: Out-of-distribution queries
	Slide 57: Streaming settings
	Slide 58: NeurIPS 2023 Challenge: Practical Vector Search
	Slide 59

	CVPR2023 Tutorial_ Neural Search in Action - Representing, transiting & searching multimodal data, Han Xiao

