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Challenge: Scarcity of Data

* Despite PET’s great promise, collecting sufficient
downstream data is arduous

* Few-shot tuning: A common scenario

— Tuning with limited samples per class
— Largely impacts PET performance
1-shot 70.2% vs. 1000-shot 90.4% @Pet dataset [zhang, arxiv'22]

How to make better use of few-shot tuning data?

* An effective augmentation pipeline

2 Where to augment?
@ How to augment?



Insight: Shift in Attention Indicates Over-fitting

e During PET, FViT’s attention shifts to irrelevant
positions (red boxes)

Tuning Process

Half-tuned FViT's Fully-tuned FViT's
Attention Map Attention Map
Acc: 64.37% Acc: 61.59%

= Shift in attention map indicates potential over-fitting

Pretrained FViT's
Attention Map

Input Image

Leverage the pretrained FViT to guide the

augmentation of few-shot PET



Hint-Aug: Key Enablers

* Core |ldea: Leverage the pretrained FViT’s learned
generalizable features to guide augmentation

Q1: Where to augment? mp Al: Attentive Over-fitting Detector
Augment the patch that the FVIT is over-fitted to

02: How to augment? ®p A2: Confusion-based Feature Infusion
Infuse easy-to-confuse features from FViT
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Background: Parameter-efficient Tuning (PET)

 Foundation vision transformers (FViTs) learns
features w/ strong adaptation ability
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[Zhang, arXiv'22]
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* Despite PET’s great promise, collecting sufficient

downstream data is arduous



Challenge: Scarcity of Data

* Despite PET’s great promise, collecting sufficient

downstream data is arduous

* Few-shot tuning: A common scenario

— Tuning with limited samples per class
— Largely impacts PET performance

« 1-shot 70.2% vs. 1000-shot 90.4% @ Pet dataset [zhang, arxiv'22]



Our Goal: Improve Data Efficiency
How to make better use of few-shot tuning data?

* An effective augmentation pipeline

? Where to augment?

? How to augment?



Insight: Shift in Attention Indicates Over-fitting

* During PET, FViT’s attention shifts

Tuning Process
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Insight: Shift in Attention Indicates Over-fitting

e During PET, FViT’s attention shifts to irrelevant
positions (red boxes)
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Insight: Shift in Attention Indicates Over-fitting

e During PET, FViT’s attention shifts to irrelevant
positions (red boxes)

Tuning Process

Half-tuned FViT's Fully-tuned FViT's
Attention Map Attention Map
Acc: 64.37% Acc: 61.59%

= Shift in attention map indicates potential over-fitting

Pretrained FViT's
Attention Map

Input Image

Leverage the pretrained FViT to guide the

augmentation of few-shot PET



Our Contributions

* Propose Hint-based Data Augmentation (Hint-Aug) to
guide data augmentation in few-shot PET

* Integrate two key enablers:
— Attentive Over-fitting Detector: identify the
over-fitting samples with attention maps
— Confusion-based Feature Infusion: infuse pretrained
FViTs’ learned features to data

e SOTA accuracy-data efficiency trade-off: e.g., a2 2.22%
higher accuracy with 50% less data on Pet dataset



Hint-Aug: Core Idea

* Leverage the pretrained FViT’s learned generalizable

features to guide augmentation
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Hint-Aug: Key Enablers

Q1: Where to augment? mp Al: Attentive Over-fitting Detector
Detect and augment the patch that FViT is over-fitted to

e Attention map diff. between pretrained and tuned FViT

— Avg. diff > threshold: Suspicious to over-fitting
m) Select largest diff. patch

— Avg. diff <= threshold: No significant over-fitting
m) Select highest attention patch
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Hint-Aug: Key Enablers

Q1: Where to augment? mp A1: Attentive Over-fitting Detector

Q2: How to augment? mp A2: Confusion-based Feature Infusion
Infuse easy-to-confuse features to FViT

 Calculate confusion-based adversarial targets C based on prob.
of wrongly classified to each class

* |nfuse features to selected patch w/ adv. attack with target C
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Hint-Aug: Evaluation Settings

Three PET methods:

— Adapter [Houlsby, icm1’19], LORA [Hu, arxivi21], VPT pia, ECCV’22]

Five few-shot datasets:
— Food, Pet, Flowers, Aircraft, Cars

Eight few-shot settings: 1/2/4/8/12/16-shot
FViT: ImageNet pretrained ViT-Base [posovitskiy, icmL20]

Two SOTA baselines: No augment; NPS [zhang, arxiv’22]



Hint-Aug: Evaluation Results

* A2.22% higher accuracy with 50% less training data on Pet dataset
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Hint-Aug: Evaluation Results

* A2.22% higher accuracy with 50% less training data on Pet dataset

* +0.04%~+32.91% higher accuracy across different shots, tuning
methods and datasets
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