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Quick Preview

We proposed CD-Flow, a normalizing flow-based CD metric for
photographic images.

▶ Step 1: Utilize a multi-scale autoregressive normalizing flow
to learn a coordinate transform,

▶ Step 2: Computing the Euclidean distance in the
transformed feature space.

▶ Properties of the learned feature transform:

▶ Consistent with the working mechanism of human color
perception.

▶ Proper as a mathematical metric.
▶ Accurate to explain human data of perceptual CDs.
▶ Robust to slight geometric distortions.



Introduction

Modular and segregated view of cortical color processing:
▶ Visual perception of colorrelated quantities is separate from

the perception of form, motion direction, and depth order in
natural scenes.

▶ Investigate color perception under minimal conditions on
form (e.g., uniformly colored patches).

Representative methods:
▶ JPC79 [1], CMC(l:c) [2], BFD(l:c) [3], CIELAB [4],

CIE94 [5], and CIEDE2000 [6].

Näıve application of these metrics to photographic images:
▶ Compute the mean of the CDs between co-located pixels.
▶ Empirically shown to correlate poorly to human perception

of CDs [7].



Problem Definition

▶ Denote RGB image space as X with an unknown distribution
pX and the transformed representation space as Z with a
latent distribution pZ .

▶ Given a training dataset D = {(x(i), y(i)), ∆V(i)}M
i=1:

▶ x(i), y(i) ∈ X form the i-th image pair of the same visual
content but different color appearances.

▶ ∆V(i) represents the corresponding human perceptual CD
collected from a subjective experiment.

▶ M is the number of training pairs.
▶ Our goal:

▶ learn a flow-based invertible transform f .
▶ f maps RGB images to latent representations with Gaussian

conditionals for CD assessment.



Feature Transform

▶ K scales of flow processing: f = f1 ◦ f2 ◦ · · · ◦ fK for
multi-scale color and form interaction and abstraction.

▶ z2(k−1) is processed and split into z2k−1 and z2k.
▶ z2k further undergoes the (k + 1)-th scale of processing and

splitting.
▶ At the final K-th scale, we only process z2(K−1) to z2K−1

without splitting.
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Figure: Feature transform of the proposed CD-Flow.



Feature Transform

▶ The probability density of the latent representation
z = {z1, z3, . . . , z2K−1} can then be conditionally factorized
as

p(z) =
K−1∏
k=1

p
(
z2k−1|

{
z≥(2k+1)

})
p(z2K−1) (1)

▶ Due to the bijectivity of the normalizing flow:

p(z) =
K−1∏
k=1

p(z2k−1|z2k)p(z2K−1). (2)

▶ p(z2k−1|z2k), for k ∈ {1,2, · · · ,K − 1} is modeled as
conditionally independent Gaussians.

▶ p(z2K−1) is modeled as (unconditionally) independent
Gaussians.



CD Distance & Loss Function

CD distance:
▶ CD distance between two input images x and y is defined as

Euclidean distance between two latent color representations
f(x) and f(y):

∆E(x, y) =

√
(f(x)− f(y))T(f(x)− f(y))

D
. (3)

Loss function:
▶ Measure the ℓp-norm induced distance between the

predicted CD computed by Eq. (3) and the perceptual CD of
the given image pair (x, y):

ℓ(x, y) = ∥∆E(x, y)−∆V(x, y)∥p. (4)



Loss Function

▶ Introduce a multi-scale version of Eq. (4) to put more
emphasis on coarser-scale latent representations:

ℓms(x, y) =
K∑

k=1

∥∆Ek(x, y)−∆V(x, y)∥p, (5)

where

∆Ek(x, y) =

√
(fk:(x)− fk:(y))T(fk:(x)− fk:(y))

Dk
. (6)



Loss Function

▶ Incorporate the commonly used maximum likelihood
objective in normalizing flow [8]:

ℓnl(x) = − log pX (x)

= − log pZ(f(x))− log

∣∣∣∣det
(
∂f(x)
∂x

)∣∣∣∣ . (7)

▶ During training, randomly sample a mini-batch B from the
training dataset D in each iteration, and optimize the model
parameters:

ℓ(B) = 1
|B|

∑
(x,y)∈B

(
ℓms(x, y) + λ

(
ℓnl(x) + ℓnl(y)

))
, (8)

where λ is the trade-off to balance the magnitudes of
different loss terms.



Main Results

▶ Compare the proposed CD-Flow with existing CD measures:

Method
Perfectly aligned pairs Non-perfectly aligned pairs All

STRESS↓ PLCC↑ SRCC↑ STRESS↓ PLCC↑ SRCC↑ STRESS↓ PLCC↑ SRCC↑
CIELAB 31.244 0.793 0.775 29.639 0.690 0.579 31.872 0.716 0.666
CIE94 34.721 0.790 0.772 29.916 0.693 0.572 34.326 0.710 0.654
CIEDE2000 29.975 0.825 0.821 30.347 0.667 0.563 31.439 0.726 0.686
S-CIELAB 30.094 0.822 0.819 31.804 0.631 0.522 32.780 0.700 0.657
Hong06 60.557 0.794 0.810 57.070 0.543 0.461 61.227 0.645 0.632
Ouni08 29.977 0.826 0.821 30.355 0.668 0.563 31.444 0.726 0.685
CD-Net 20.891 0.867 0.870 22.543 0.818 0.776 21.431 0.846 0.842
CD-Flow 16.613 0.896 0.904 21.374 0.856 0.794 18.473 0.871 0.865

▶ Robustness of CD-Flow to mild geometric distortions
(including translation, rotation, and dilation).

Method
Translation Rotation Dilation

STRESS↓ PLCC↑ SRCC↑ STRESS↓ PLCC↑ SRCC↑ STRESS↓ PLCC↑ SRCC↑
CIELAB[9] 29.414 0.620 0.577 32.633 0.529 0.495 31.511 0.519 0.467
CIE94[5] 29.141 0.645 0.596 31.943 0.566 0.519 30.323 0.567 0.505
CIEDE2000[6] 28.035 0.654 0.613 31.255 0.566 0.527 29.928 0.566 0.512
CD-Net[10] 19.825 0.845 0.842 22.463 0.784 0.772 21.704 0.787 0.773
CD-Flow 19.311 0.852 0.856 20.139 0.837 0.816 21.352 0.827 0.797



Main Results

▶ Generalizability of CD-Flow on COM dataset [6]:

Method
BFD-P [3] Leeds [11] Witt [12] RIT-DuPont [13] COM dataset [6]

STRESS↓ PLCC↑ STRESS↓ PLCC↑ STRESS↓ PLCC↑ STRESS↓ PLCC↑ STRESS↓ PLCC↑
CIELAB [9] 45.054 0.749 40.093 0.295 51.689 0.565 30.348 — 45.202 0.693
CIE94 [5] 35.798 0.830 30.494 0.584 31.857 0.793 20.982 — 33.235 0.814
CIEDE2000 [6] 31.935 0.861 19.247 0.772 30.358 0.825 20.239 — 28.979 0.862
CD-Net 39.312 0.791 38.558 0.449 33.640 0.828 42.999 — 38.872 0.786
CD-Flow 34.661 0.833 34.275 0.476 31.965 0.820 36.504 — 35.061 0.801

▶ Generalizability of CD-Flow on TID2013 subset [14]:

Method STRESS↓ PLCC↑ SRCC↑
CIEDE2000 [6] 18.203 0.730 0.751
PieAPP [15] 20.918 0.620 0.653
LPIPS [16] 15.420 0.816 0.804
DISTS [17] 15.235 0.821 0.805
CD-Net [10] 15.962 0.801 0.826
CD-Flow 14.110 0.837 0.832
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