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TARGET TASK

Open-world Semantic Segmentation

learning an universal model fo segment arbitrary concepts beyond pre-defined categories

from Only Image-Text Pairs

using only image-text pairs without any segmentation annotation
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OPEN-WORLD SEMANTIC SEGMENTATION

- Open-world segmentation model can segment different dog species, bananas by color, and
even proper nouns such as Frodo, Gollum, and Samwise




REGION-TEXT ALIGNMENT

- Open-world segmentation is conducted by region-text alignment
- Ininference, the model identifies regions in the image that align with the given text queries
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TRAIN-TEST DISCREPANCY IN EXISTING WORKS

All of the existing methods train the model via image-text alignment, even though the target task
requires region-text alignment
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TCL: TEXT-GROUNDED CONTRASTIVE LEARNING

We propose Text-grounded Contrastive Learning (TCL) to let the model learn region-text
alignment instead of image-text alignment in training time
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TCL FRAMEWORK

1. Grounder generates text-grounded mask M
2. TCL loss is computed by incorporating text-grounded image into contrastive learning
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FEATURE-LEVEL TCL LOSS

image positive
- (Image-level) TCL loss only can consider “positive” text-grounded masks . _
text negative

- We introduce feature-level TCL loss to incorporate “negative” masks into
our objective
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PREVENTING TRIVIAL SOLUTION @ W,

- There is aftrivial solution in this framework: generating full-mask independent of the text

- To prevent this trivial solution, we introduce area TCL loss:
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SMOOTH REGULARIZATION

Finally, we introduce a smooth regularization loss via total variation (TV) loss:
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SUM UP

We introduce TCL loss to let the model learn region-text alignment, instead of image-text
alignment
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ZERO-SHOT EVALUATION PROTOCOL

- Since the open-world semantic segmentation task is introduced recently, evaluation
protocols vary across studies
- For a fair comparison, we present a unified evaluation protocol
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QUANTITATIVE RESULTS

TCL remarkably outperforms previous methods

in every dataset
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Stuff 26.0 —— GroupViT
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Methods VOC Context Object | VOC20 Context59 Stuff City ADE | Avg. Clyeages p— $§fc<>o :

urs
GroupViT (YFCC) 49.5 19.0 243 74.1 20.8 126 69 8.7 27.0
GroupViT (RedCaps) | 50.4 18.7 27.5 79.7 234 153 11.1 92 | 294
MaskCLIP' 29.3 21.1 15.5 53.7 233 147 216 10.8 | 23.7
MaskCLIP 38.8 23.6 20.6 74.9 26.4 164 126 938 279
ReCo 25.1 19.9 15.7 57.7 223 148 21.1 112 | 235
TCL (Ours) 55.0 30.4 31.6 83.2 33.9 224 240 171 | 372
(+4.6) (+6.8) (+4.1) | (+3.5) +7.5) (+6.0) (+2.4) (+5.9) | (+7.8)




QUALITATIVE COMPARISON ON PASCAL VOC
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QUALITATIVE EXAMPLES IN THE WILD

Sunset Back view of Red banana Eagle mark Pyramid Frodo
Hill Buddist pagoda  a standing bear Green banana MMU Sphinx Samwise Shepherd
Temple House Rabbit Yellow banana Turkish Gollum
Many trees Fighter

Satellite



GROUNDING VISUALIZATION

Grounding decoder lets the model learn region-text

alignment
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ABLATION STUDIES

Table (a) indicates that TCL loss significantly improves segmentation performance by learning
region-text alignment

[B] Training the grounding decoder without TCL loss does not improve performance

Method |VOC20 TCL, TCLf Laea CL|VOC20
A Baseline 552 D v | 61.1
B + Decoder| 52.3 E V v 74.6
c + TCL 77.4 F v (4 76.0

cC Vv v v 77.4
G VvV v vV Vv | 756
H VvV v 67.1

(a) Baseline to TCL. (b) TCL losses.
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THANK YOU!

Contact: junbum.cha@kakaobrain.com
Code: https://qithub.com/kakaobrain/tcl
Demo: https://huggingface.co/spaces/khanrc/icl
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