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Even with the same number of per-
class training samples, there is a
severely imbalanced categorical
performance:

1. Imbalanced #per-class predictions.

\ 2. Imbalanced per-class accuracy.
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The Key Observation: Transductive Fine-tuning[4]:
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Even with the same number of per-
class training samples, there is a
severely imbalanced categorical
performance:

1. Imbalanced #per-class predictions.
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2. Imbalanced per-class accuracy.
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250 Lq(x) = Mpo(y[x)) x H(po(y|x))«
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Without TF-MP, there is a severely
imbalanced categorical performance
even with the same number of per-
class training samples.
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Margin-based Uncertainty

Weighting The utilization of wrong

predictions is largely

Without TF-MP, there is a severely compressed

imbalanced categorical performance

Weighting unlabeled

testing data
even with the same number of per- g

class training samples.
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Without TF-MP, there is a severely
imbalanced categorical performance
even with the same number of per-
class training samples.
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Transductive Fine-tuning[4]:

9*(ps,pq):arg9min(Ni 3 cs(x,y)+Niq S £,(x)

(x,y)€EDs (x)€Dq
TF-MP:
£46) = Moo (y)) x Hipo(y)]
;

Probability Regularization

———— N

Regularize the imbalanced probability
of testing data
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The Observation on Low-shot Fine-tuning
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Performance of SOTA methods with a
uniform testing set (10 per-class samples)
using Meta-Dataset[1]:

e The Largest Difference (LD)
between #per-class predictions is
ideally 0 when each class is equally
learned.

e LD islargely over 10 for SOTA
methods.
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This indicates: the learned class
marginal distribution is largely
imbalanced and biased.

Solving this issue is critical to
maintaining the algorithms’
robustness in different testing
scenarios.
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A few training samples Testing samples

@ Fine-tuning . Deep
' ] ] Model
- Involving testing \
data

Transductive Fine-tuning with Margin-based Uncertainty Weighting and
Probability Regularization (TF-MP):

Lq(x) = Mpo(y|x)) x H(po(yl|x))

Testing sample’s prediction

/ \
Margin-based uncertainty  Probability
weighting Regularization L )
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Given the predicted probability p for each unlabeled testing data, Entropy-based
uncertainty is generally used to assign loss weights:

¥ (i log p;)
€(p) - logC'

Larger uncertainty refers to smaller loss weight:

A(p) =1 —e(p)

where p is the abbreviation for py(y|x)

chpz = 17p = [p17p27”'pc]_

(' : the number of classes.
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uncertain on

We emphasize the importance of the margin L
. prediction
between the maximum and second 0.6 06
maximum probability Ap in uncertainty smalle![ ' '
computation. marginl V- [
0.20.2
0.
Confidence 0.6 0.6

Entropy 0.61 0.86

The entropy uncertainty cannot reflect the margin information.

C )
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Margin-based Uncertainty Weighting

uncertain on

We emphasize the importance of the margin o
. prediction
between the maximum and second 0.6 06
maximum probability Ap in uncertainty smalle![ ' '
computation. marginl V- |
. . 0.20.2
Margin-based Uncertainty: 0
: Lo '
é(p) = —@(pmax l0g Prmax Confidence 0.6 0.6
L (ﬁmam - AAp) log(ﬁma:c - AAP)) Entropy 061 086
Margin-based (.97 0.81

Entropy
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(a) Weights with Top-k Prob.

e Margin-based Entropy (top-2) weighting outperforms Entropy weighting (All).
e The utilization of testing data with wrong predictions are largely compressed by Margin-based |
uncertainty weighting. L 12))
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The loss objective for unlabeled testing data:

Lq(x) = AMpo(y|x)) x H(po(y[x))

H(po(y|x)) = =y log(po(y|x))---_

A

Y : Pseudo-label for unsupervised testing data |

1
Y4

————

Regularize the imbalanced probability
of testing data
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The scale vector for each testing sample x:

U
Eyup, [pe(y|%)]

vV = U € R uniform distribution

e The vector v quantifies the difference between uniform and the learned
marginal distribution.
® The learned marginal is estimated using the set xUD s
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Probability Regularization CVPR

The scale vector for each testing sample x:

U
Eyup, [pe(y|%)]

vV = U € R uniform distribution

e For each testing data, the predicted probability q is regularized by element-wisely
multiplied using v as follows:

El — Normalize(q X V) Normalize(a:i) — S ':1:-




JUNE 18-22, 2023

Experimental Results CVPR

VANCOUVER, CANADA

We compare the state-of-the-art methods and benchmark on a published Meta-
Dataset| 1]

Method Backbone | ILSVRC Omni Acraft Birds DTD QDraw Fungi Flower Sign COCO
fo-P-M [32] - 495+1.1|600+14| 53.1+1.0 | 688+1.0 | 666+08 | 490+1.1|397+1.1|853+0.8 |471+1.1|41.0+1.1
BOHB [26] - 519+1.1 | 67612 | 541+09 | 70.7+09 | 683+0.8 | 503+1.0 | 414+1.1 | 873+0.6 | 51.8+1.0 | 48.0£1.0

LR [31] ResNet18 60.1 64.9 63.1 71.7 78.6 62.5 47.1 91.6 715 57.0
Meta-B [6] | ResNetl8 59.2 69.1 54.1 71.3 76.0 57.3 454 89.6 66.2 95.7
CNAPS [1] | ResNetl8 54.8 62.0 49.2 66.5 71.6 56.6 37.5 82.1 63.1 45.8
DCM-S [30] | ResNet34 64.6 81.8 79.7 85.0 779 69.3 493 93.2 88.7 57.7

CTX [¥] ResNet34 | 62.7+1.0 | 822+1.0 | 795+09 | 80.6+09 | 75.6+0.6 | 727+0.8 | 51.6 £ 1.1 | 95304 | 826+ 0.8 | 599 £ 1.0
TSA[17] ResNet34 | 63.7+1.0 | 826+ 1.1 | 80.13+1.0 | 834+0.8 | 79.6+0.7 | 71.0+0.8 | 514 +12 | 941 £05 | 81.7£1.0 | 61.7£ 1.0

T-CNAPS [1] | ResNetl8 | 54.1£1.1 | 62913 | 484+09 | 67.3£09 | 725+0.7 | 580+1.0 | 377+ 1.1 | 828+ 0.8 | 61.8 = 1.1 | 458 1.0
T-F [7] WRN-28 60.5 82.0 72.4 82.1 80.5 574 47.7 92.0 64.4 429
TF-MP ResNetl8 | 622+ 1.1 | 838+ 1.1 | 709+09 | 81.3+0.8 | 792+0.6 | 705+0.6 | 51.2+1.0 | 933+04 | 782+ 1.0 | 62.5+0.9
TF-MP ResNet34 | 66.4 +1.0 | 87.5+0.8 | 80.0 09 | 874+0.6 | 81.9+0.6 | 71.9+04 | 549+09 | 948+ 04 | 89.2+09 | 61.5£09

*TF-MP achieves SOTA performance over transductive settings in Meta-Dataset.

*TF-MP i1s effective with different scales of models and datasets from different domains

D)
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0 10th Iter. 20th Iter. 1-shot 2-shot 3-shot 4-shot 5-shot
(b) Imbalanced Pred. vs. Iteration. (c) N-shot Analysis.

b)TF-MP eftfectively reduces the imbalance in per-class predictions during fine-tuning for various
datasets.
¢)TF-MP boosts performance over the different number of few-shot settings.
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