

Generalist: Decoupling Natural and Robust Generalization

Yisen Wang

Peking University

Paper: https://arxiv.org/pdf/2303.13813.pdf

Code: https://github.com/PKU-ML/Generalist

Adversarial Training

Adversarial attack

x
"panda"
57.7% confidence

 $\operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

Adversarial training

 \boldsymbol{x}

 $\mathrm{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

One learner for all?

Motivation

- Undesirable increase in the natural error when the adversarial error decreases (e.g. TRADES, FAT)
- Not flexible training configurations in the joint training framework

Epoch < t'


```
for \mathbf{t} \leftarrow 1, 2, \cdots, T do Sample a minibatch (x,y) from data distribution \mathcal{D}_1 /* Parallel-1: Update parameters of base learner-1 over \mathcal{D}_1*/ (Optional) Performing model ensembling, data augmentation or label smoothing, etc. \theta_n \leftarrow \mathcal{Z}_n \left[\mathbb{E}_{(x,y)}(\nabla_{\theta}\ell_1(x,y;\theta_n)), \tau_n\right] /* Parallel-2: Update parameters of base learner-2 over \mathcal{D}_2*/ x_0' \leftarrow x + \varepsilon, \varepsilon \sim \text{Uniform}(-\varepsilon, \varepsilon). for \mathbf{k} \leftarrow 1, 2, \cdots, K do x_k' \leftarrow \Pi_{x_k' \in \mathbb{B}_{\varepsilon}(x)} \left(\kappa \operatorname{sign}\left(x_{k-1}' + \nabla_{x_{k-1}'}\ell_2(x_{k-1}', y; \theta_r)\right)\right) end for (Optional) Performing model ensembling, data augmentation or label smoothing, etc. \theta_r \leftarrow \mathcal{Z}_r \left[\mathbb{E}_{(x_s',y)}(\nabla_{\theta}\ell_2(x_{K}',y;\theta_r)), \tau_r\right]
```

end for

• Epoch < t'

for $t \leftarrow 1, 2, \cdots, T$ do
Sample a minibatch (x, y) from data distribution \mathcal{D}_1

/* For the global learner*/
$$\theta_g \leftarrow \alpha' \theta_g + (1 - \alpha')(\gamma \theta_r + (1 - \gamma)\theta_n)$$

end if end for

• Epoch $\geq t'$

for $t \leftarrow 1, 2, \cdots, T$ do Sample a minibatch (x, y) from data distribution \mathcal{D}_1

 $\begin{array}{l} \text{if } t \geq t' \text{ and } t \mod c == 0 \text{ then} \\ \theta_r, \theta_n \leftarrow \theta_g \\ \text{end if} \\ \text{end for} \end{array}$

Advantages

- Decouple task-aware assignments from joint training
 - Each base learner can wield customized strategies (e.g., EMA, augmentations) for better performance
 - Lower error in sub-tasks results in a lower error bound for the global learner (Theorem 1)
- ➤ Initialize base learners from the global learner
 - Enable fast learning within a given assignment and improve generalization (Claim in Section 3.3)

Experiments

ResNet-18 on CIFAR-10

Method	NAT	PGD20	PGD100	MIM	CW	$APGD_{ce}$	$APGD_{dlr}$	$APGD_t$	FAT_t	Square	AA
NT	93.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$AT (\beta = 1)$	84.32	48.29	48.12	47.95	49.57	47.47	48.57	45.14	46.17	54.21	44.37
$AT (\beta = 1/2)$	87.84	44.51	44.53	47.30	44.93	40.58	42.55	40.20	44.56	50.76	40.06
TRADES ($\lambda = 6$)	83.91	54.25	52.21	55.65	52.22	53.47	50.89	48.23	48.53	55.75	48.20
TRADES ($\lambda = 1$)	87.88	45.58	45.60	47.91	45.05	42.95	42.49	40.38	43.89	53.49	40.32
FAT	87.72	46.69	46.81	47.03	49.66	46.20	47.51	44.88	45.76	52.98	43.14
IAT	84.60	40.83	40.87	43.07	39.57	37.56	37.95	35.13	36.06	49.30	35.13
RST	84.71	44.23	44.31	45.33	42.82	41.25	42.01	40.41	46.54	50.49	37.68
Generalist	89.09	50.01	50.00	52.19	50.04	46.53	48.70	46.37	47.32	56.68	46.07

• WRN-32-10 on CIFAR-10

Method	NAT	PGD20	PGD100	MIM	CW	$APGD_{ce}$	$APGD_{dlr}$	$APGD_t$	FAT_t	Square	AA
NT	93.30	0.01	0.02	0.05	0.00	0.00	0.00	0.00	0.87	0.28	0.00
AT $(\beta = 1)$	87.32	49.01	48.83	48.25	52.80	48.83	49.00	46.34	48.17	54.26	46.11
AT $(\beta = 1/2)$	89.27	48.95	48.86	51.35	49.56	45.98	47.66	44.89	46.42	56.83	44.81
TRADES ($\lambda = 6$)	85.11	54.58	54.82	55.67	54.91	54.89	55.50	52.71	52.61	57.62	52.19
TRADES ($\lambda = 1$)	87.20	51.33	51.65	52.47	53.19	51.60	51.88	49.97	50.01	54.83	49.81
FAT	89.65	48.74	48.69	48.24	52.11	48.50	48.81	46.70	46.17	51.51	44.73
IAT	87.93	50.55	50.72	52.37	48.71	47.71	46.55	43.84	45.78	56.52	43.80
RST	87.27	46.55	46.76	47.02	45.99	45.73	46.58	45.78	43.18	52.44	41.52
Generalist	91.03	56.88	56.92	58.87	57.23	53.94	55.80	53.00	53.65	63.10	52.91

Communication frequency and mixing ratio

Different Optimizers

Visualization

(1) Easy

Generalist: horse

TRADES: horse Generalist: bird Label: bird

TRADES: dog Generalist: frog Label: frog

TRADES: truck

Generalist: bird

TRADES: truck

Generalist: airplane

Label: bird

TRADES: airplane Generalist: bird Label: bird

TRADES: airplane Generalist: cat Label: cat

TRADES: truck

Generalist: cat

Label: cat

TRADES: cat Generalist: deer

Label: deer

TRADES: dog Generalist: bird Label: bird

FAT: ship Generalist: horse Label: horse

TRADES: horse Generalist: deer Label: derr

FAT: frog Generalist: deer Label: deer

TRADES: bird

Generalist: cat

TRADES: airplane

Generalist: ship

FAT: automobile

Generalist: truck

Label: truck

Label: ship

Label: cat

Label: horse

TRADES: horse Generalist: dog Label: dog

TRADES: dog Generalist: cat Label: cat

FAT: airplane

Generalist: bird Label: bird

FAT: airplane Generalist: ship Label: ship

Conclusion

- Propose a bi-expert framework named Generalist for mitigating the tradeoff between natural and robust generalization
- By decoupling from the joint training paradigm, each base learner can wield customized strategies based on data distribution
- Theoretically and empirically justify the effectiveness of Generalist

Poster Session

Fri 23 Jun 1:30 a.m. CST — 3 a.m. CST

West Building Exhibit Halls ABC 388