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Text-Guided Image Inpainting

Task: Given an image, a masked area, and a text instruction — Edit the masked area according to text
while keeping the unmasked area intact.
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Use cases:
e Image editing: Tinkering a raw generated/retrieved image to fit the user’s vision better.
e Data synthesis: Creating training/evaluation data for text-image modeling at scale with

balanced content distribution (addressing the “long tail”).
(Example: in ROSIE, we generated diverse environments to teach robots to learn navigation
and manipulation better!)
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https://diffusion-rosie.github.io/

Text-Guided Image Inpainting

Evaluation: When we say Model A performs better/worse than Model B, what do we mean?
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Existing metrics are
e Reasonably reliable at model/dataset-level, while leaving rooms of improvement at
instance-level (e.g. CLIP-based metrics, BLEU/METEOR/SPICE).
e Need to be made more informative to answer the question “then how do we improve?” (e.g.
human judgments on “does this image match this text?”).
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In this work ...

We present a text-guided image inpainting model —
Imagen Editor — that is steps ahead of the
state-of-the-art competition.

... and to back up our claim, we propose a systematic
and fine-grained evaluation benchmark — EditBench —
to stack Imagen Editor against competition in
comprehensive experimentation.

The benchmark is also an effort to push for more
informative, semantically granular text-image
alignment evaluation beyond the common “wall of
pretty images + hard-to-interpret auto/human evals”
formula.

Stable v Imagen Editor Imagen Editor
Diffusion DALL-E2 (Random Mask)
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I m a g e n Ed Ito r Image Mask Prompt: “A dog astronaut”

' l Imagen

A cascaded diffusion model built on T5-XXL Encoder
our text—image generator Imagen. f

—-  Encoder 1 64x64 Base

‘ Qutput

ngh-resol-utlon Condltlonlng.- - setermpaning [ Encoder2 ——= 256256 SR
All cascading stages are conditioned on  result across a wider i
the full resolution image (the editing target). : rangeofresolutions. = [/ g oders — 10241024 SR

Object-oriented Masking. Denoising mask created by
powerful object detection model on-the-fly.

Classifier-Free Guidance. Biasing output towards
more faithful text-image alignment.

NOTE: This is in addition to the standard training
techniques (rather than replacing) such as : :
random masking with boxes / strokes, . Greatly mitigates

. LT : paint-over and
uncropping, ﬂlppmg: etc. artifacts.

Follows the text
© instruction better.




EditBench

A collection of 240 rich annotated evaluation items (50:50
generated vs. natural image ratio) that features

e Fine-grained semantic categories along three
dimensions

o Attributes: {material, color, shape, size, count}
o Objects: {common, rare, text rendering}
o Scenes: {indoor, outdoor, realistic, painting}

° Text prompt types
Full-image: describes the entire image.
o Mask-simple: describes only the main object/attribute

in the masked area.
o Mask-rich: Also only targets the masked area but more

richly descriptive.

e Covers a wide range of mask sizes
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Mask Simple

“A metal cat”

Mask Rich

“A metal cat is
sitting and with its
tail wrapped
around its body”

Full Image

“A metal cat sitting
in the middle of a
farm field.
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EditBench

Leveraging the rich annotation, we elicit human
judgment from different angles in a fine-grained way.

Prompt:a flat-shaped cat hanging on the cabinets in a kitchen. Prompt:a short letter "C". Prompt:an orange ostrich with brownish body and an orange tail.

Does the image match the caption? Object Attribute  Object + Attribute Object ) Attribute Object + Attribute

OYes [ letter "C" () short [ letter "C" IS short [Jostrich [ orange colored ] ostrich IS orange colored
O No [J body () brownish ) body IS brownish
[ tail (] orange [ tail IS orange
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‘a metal cat sitting in
the middle of a farm
field.”

“ametal cat is

sitting and with its
tail wrapped around |
its body."

1. Which image is more realistic?

2 Model 1

® Model 2

-- ANNOTATOR QUESTIONS ---_

“Does image match caption?”

object=cat?
attribute=metal?
object+attribute=cat IS metal?

it 1 object=cat? attribute=metal?

object+attribute=cat IS metal?
object=cat? attribute=sitting?
object+attribute=cat IS sitting?
object=tail?

attribute=wrapped around body?
object+attribute

=tail IS wrapped around body?

2. Which image matches with the caption better?

Model 1

Model 2




Experimentation

We compare

Stable Diffusion (v1.5, latest at the time of pub)
DALL-E 2

Imagen Editor baseline (no object masking)
Imagen Editor

with

e Automatic Evaluation (standard method sa. CLIPScore)
e Human Evaluation (with EditBench)
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Result — Automatic Evaluation

SD DL2 IMgm IM | Ref.

Experiment 1. Scoring directly

CLIPScore (1)
T2I 297 291 296 315 | 310
e CLIPScore: Text-lmage embedding similarity. 121 749 761 758 766 | -
e CLIP R-Prec: Retrieval precision of edited image for T2t 523 526 531536 -
CLIPR-Prec(f) 965 953 950 98.6 | [99.3
ground truth text from a set of 100. ——— tas 433 436 463 | [289
e NIMA: Image quality assessment based on human
perceptual quality and aesthetics.
Prompt Image T2I I2I T2I+I21 R-Prec Rand Experiment 2. Model selection
Full Full 701 586 668 533 500
Full Crop 68.1 558 624 577 500 Percentage agreement between CLIPScore metrics and
Mask-Simple ~ Full 738 53.1 632 720 500 human judgments when picking the best image out of
Mask-Simple  Crop 760 553 664 710 500 two model-produced images for the same prompt.
Mask-Rich Full 667 552 634 623 500
Mask-Rich Crop 684 564 641 633 500
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Result — Human Evaluation with EditBench

Experiment 1. Single-image evaluation

—
o
o

probes a model with three types of prompts:

o0
o

e  Full prompts that describe the entire image — we elicit
binary answers to the question Does the image match
the caption?.

e  Mask-Simple prompts describe the masked area only
and involve a single attribute-object pair — we check if
the object and attribute are properly rendered, as well
as whether they are bound to each other correctly (e.g. 0

[ [=2]
o o

% Correct Image-Text Alignment
]
S

) SD DL2 Mgy IM SD DL2 Mgy IM SD DL2 Mgy IM
for red cat, a white cat on a red table would be an Full Mask-Simple Mask-Rich

incorrect binding).
e  Mask-Rich prompts extend mask-simple to 3 or more
object-attribute pairs.

For mask-simple/rich prompts, text-image alignment is only counted as correct if the edited image correctly includes every attribute
and object specified in the prompt, including the correct attribute binding (setting a very high bar for correctness)
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Result — Human Evaluation with EditBench
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Experiment 1. Single-image evaluation (con’td)
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Result — Human Evaluation with EditBench

Experiment 2. Side-by-side evaluation

a platter of food placed in a triangle shape in a white plate.
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1. Which image is more realistic?

~ Model 1

® Model 2
2. Which image matches with the caption better?

© Model 1

© Model 2
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Result — Human Evaluation with EditBench

Synthetic
Experiment 3. Qualitative analysis

Object-oriented masking greatly improve models’ ability
to faithfully follow text instructions. Specifically, include
objects/attributes mentioned correctly.

This is also quantified in our breakdown of the
percentage of objects/attributes/bindings correctly
rendered.

Imagen Editor Imagen Editor Imagen Editor Imagen Editor
(Random Mask) (Object Mask) (Random Mask) (Object Mask)
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Result — Human Evaluation with EditBench

Experiment 3. Qualitative analysis (cont'd)
Some semantic categories are harder than others.

e First-order semantic properties such as material,
color, size, etc. are easier.

e Less abstract properties such as color are easier
than more abstract ones such as shape.

e Higher-order properties such as count are harder.
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Summary of Findings

e Imagen Editor is a state-of-the-art text-guided image inpainting model, based on
our automatic and human evaluation results.

e The human evaluation results produced with our EditBench benchmark are
fine-grained, interpretable, and informative for the further development of
text-guided image editors.

e Our findings illustrate a promising and functionally useful direction for the
evaluation of text-image models. We hope it seeds and leads to more
innovations in the space.
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Thank you!
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