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Self-Supervised Learning

Towards General Representations

Energy
Function

Approach

Learn to represent data by capturing
mutual dependencies between
Inputs

time or space -
w vV ny

Yann LeCun
A Path Towards Autonomous Machine Intelligence

OpenReview, 2022.



T McGill $oMila 0QMeta Al

VA
5

What do we have so far?

Common Approaches for Visual Representation Learning

Learn representations by capturing mutual dependencies between inputs...
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What do we have so far?

Common Approaches for Visual Representation Learning

Maximize agreement
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Self-Supervised Methods

Canonical Joint-Embedding Architecture

Published as a conference paper at ICLR 2023

Limitations:

THE HIDDEN UNIFORM CLUSTER PRIOR IN

Semantic level of representations also SELE-SUPERVISED LEARNING

depends on certain assumptions...
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What do we have so far?

Common Approaches for Visual Representation Learning

Learn representations by capturing mutual dependencies between inputs...
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Self-Supervised Learning

Generative Architectures

Generative architectures tend to learn
representations of a lower semantic level...
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Published as a conference paper at ICLR 2023

WHAT DO
SELF-SUPERVISED VISION TRANSFORMERS LEARN?
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Image JEPA
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Image JEPA

Towards More General Representations

Accuracy

ImageNet-1K Linear Evaluation
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Very efficient...

Training ViT-Huge/16 with I-JEPA is faster than
training ViT-Small/16 with iBOT!

Converges faster than generative methods,
which require many epochs of pre-training

(MAE)
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Image JEPA

Towards More General Representations

Targets Arch. Epochs Top-1
Target-Encoder Output  ViT-L/16 500 66.9
Pixels ViT-L/16 800 40.7

Table 7. Ablating targets. Linear evaluation on ImageNet-1K
using only 1% of the available labels; ablating the effect of the

prediction targets during I-JEPA pretraining. To ensure conver-
gence when predicting in pixel space, we trian the model for more
epochs. The semantic level of the I-JEPA representations degrades
significantly when the loss is applied in pixel space, rather than
representation space, highlighting the importance of the target-
encoder during pretraining.

AT

I-JEPA is non-generative...

Same method in pixel space performs much
worse on semantic classification tasks...
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Image JEPA

Towards More General Representations
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Image JEPA

Towards More General Representations

Method Arch. CIFARI00 Places205 iNat1$ I-JEPA captures global semantics...

Methods without view data augmentations

data2vec [7] VIT-L/16 81.6 54.6 28.1

MAE [34]  ViT-H/14 77.3 55.0 32.9 * Qutperforms generative methods

[-JEPA ViT-H/14 87.5 584 47.6

Methods using extra view data augmentations o : : s :

DESOIIT] | VMERS 240 $70 550 Closes gap with view-invariance methods
iIBOT [74] VIT-L/16 88.3 60.4 57.3

Linear transfer to semantic image-level visual tasks
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Image JEPA

Towards More General Representations

Method Arch. Clevr/Count Clevr/Dist : :
ol o o eemm e I-JEPA also captures local information...

Methods without view data augmentations

data2vec [7] VIT-L/16 85.3 71.3
MAE [34]  ViT-H/14 90.5 72.4 * Qutperforms view-invariance methods in
[-JEPA ViT-H/14 86.7 724

low-level tasks (e.g., depth prediction)

Methods using extra data augmentations
DINO [17] ViT-B/8 86.6 534

iBOT [74]  ViT-L/16 85.7 62.8  Comparable with generative methods

Linear Transfer to Low-Level Visual Tasks
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Image JEPA

Towards More General Representations

Method Arch. Epochs Top-1

Methods without view data augmentations

data2vec [7] VIT-L/16 1600 73.3
VIT-L/16 1600 67.1

2,

MAE [34] VILH/14 1600 715
VIT-L/16 600 69.4

I-JEPA ViT-H/14 300 73.3
ViT-H/16445 300 77.3

Methods using extra view data augmentations

1IBOT [74] ViT-B/16 250 69.7

DINO [17] ViT-B/8 300 70.0

SImCLR v2 [33] RNI51(2x) 800 70.2

BYOL [33] RN200 (2x) 800 71.2

MSN [7] ViT-B/4 300 75.7

ImageNet 1% Semi-Supervised Evaluation

UJ .'/‘

Scaling I-JEPA...

New SoTA for ImageNet semi-supervised eval...
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