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Modular memorability: a I’ summary

The probability one will remember this video: m € [0,1] Spearman RC p 7
Approach Mementol0k  VideoMem
e consistent across people = predictable! MemNet baseline™ [31] 0.485 0.425
 highly unintuitive = hard to predict.. Cohendet et al. (Semantic)* [13] 0.552 0.503
Cohendet et al. (ResNet3D)* [13] 0.574 0.508
SemanticMemNet' [40] 0.659 0.556
Our contributions: M3-S (ours) 0.670 0.563
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e consistent across people = predictable!
e highly unintuitive = hard to predict...

e harder than for images! a lot of additional factors (motion, emotions...)
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How is the ground truth for video memorability obtained?
e 3-second videos shown to participants
e targetvideo is surrounded by filler videos

° 2 main datasets: VideoMem and MementolOk
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Limitations of existing works
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e do not leverage underlying structure governing memorability in the brain
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When is a video memorable?

° classification of factors into tiers
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Our modular approach

Our model separates between different tiers by design:
° low-level
° mid-level (blue)
° high-level (purple)
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Training procedure

e evaluation metric: Spearman rank correlation

e training and evaluation on VideoMem and MementolOk (separately)
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Training procedure

evaluation metric: Spearman rank correlation
e training and evaluation on VideoMem and MementolOk (separately)

e loss on MementolOk: MSE with tail penalization

El(m, 77A’L) = [1 + p(m)] LMSE(m, m),

e loss on VideoMem: weighted mean between MSE and (smooth) Spearman RC
2 i A = 5P
Lo (m> m) — (1 - aep)LMSE(ma m) I aepLSpearman<ma m) Qep = Nep—1
ep € {0,...,Ng, — 1}
Parameter Memento10k [6] VideoMem [4]

Hidden channels  [512, 64, 1] -

Batch size 32 -

Learning rate 1073 - =35

Scheduler StepLR, v = 0.2, step size =5 — HP AT

Epoghs 20 - RS T

Loss MSE (tails) MSE + Spearman RC 0:56 ———_

Weight decay ik e - -

Optimizer Adam - o '

Normalizing raw v — Epoch 04 Epoch
Normalizing sim v - 0 5 10 15 0 5 10 15

MementolOk VideoMem
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.. while keeping a degree of interpretability
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Results - feature representations

each module learns representations
that are meaningful and substantially
different from each other

low-level high-level

scan for
high-res!




Our model...

e . isgood with
o  specific actions/objects (a,b)
o peculiar semantic context (c)
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e .. overestimates the memorability of scenes that
o are semantically bland with humans (a)
o are very dynamic with no clear action (b)
o contain memorable elements, such as humans or
faces, but that are very shaky (c), cluttered or blurry.
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Future directions: video memorability remains an open problem!
° model often fails because of complex semantic, extreme pixel intensity or extreme motion
° room for understanding how to research each module

e overhaul high-level module through emotion prediction
(bottleneck: no competitive model or dataset for video emotion prediction)
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