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A cloud consists of m unlabeled points in Rn, or
in a metric space (given by pairwise distances).

An isometry is any map preserving inter-point
distances. In any Euclidean Rn, all isometries
are compositions of translations, rotations, and
reflections, and form the Euclidean group E(n).

If reflections are excluded, we get rigid motions
that form the group SE(n). The rigid pattern of
a cloud C is its class under SE(n) or E(n).



Isometry problem for clouds
Design an invariant I : {isometry classes of
clouds in Rn} → {a simpler space} satisfying

completeness: any clouds A,B are isometric if
and only if I(A) = I(B), so I is a DNA-style code
with no false negatives and no false positives;

Lipschitz continuity : there is a constant λ, if
any point of A is perturbed up to ε, then I(A)
changes by at most λε in a metric d such that

d(I(A), I(B)) = 0 ⇔ A,B are isometric,
d(I(A), I(B)) = d(I(B), I(A)), d1 + d2 ≥ d3.



Labeled vs unlabeled points in Rn

If all m points of a cloud C ⊂ Rn are labeled
p1, . . . ,pm, then C is reconstructed (uniquely up
to isometry) from the distances dij = |pi − pj |.

If m points are unlabeled, C can be uniquely
represented by m! distance matrices obtained
by m! permutations of points, it’s impractical.

The isometry problem has one more condition

computability: the invariant I and the metric d
are computable in a polynomial time in the
number m of points for a fixed dimension n.



Generically complete invariants
Geometric Deep Learning (GDL) trains neural
networks to output isometry invariants but

without proofs of completeness and continuity

while ignoring the known geometric invariants.

Boutin, Kemper, 2004: the vector of all sorted
pairwise distances is generically complete in Rn

distinguishing almost all clouds of unlabeled
points except singular examples. We extend this
invariant instead of trying to reinvent the wheel.



Pointwise Distance Distributions
For a set S of m points p1, . . . ,pm in a metric
space, choose any number 1 ≤ k < m of
neighbors and build the m × k matrix D(S; k).
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Collapse identical rows and assign weights. The
matrices PDDs are continuously compared by
Earth Mover’s Distance (EMD), NeurIPS 2022.



Invariants stronger than PDD
Conjecture: PDD is complete for clouds in R2.

PDD is not complete for some clouds in R3, but
the stronger invariants below distinguish them.



Relative Distance Distribution
Let C be a cloud of m unlabeled points in a
metric space. SDD(C;h) for h = 1 is PDD(C).

Any sequence A ⊂ C of h points has the matrix
RDD(C;A) with m − h permutable columns of
distances from q ∈ C − A to all points of A.
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Simplexwise Distance Distribution
Classes of these RDD pairs with the distance
matrix of A (up to permutations of points in A)
for all h-point unordered subsets A ⊂ C form
SDD(C;h). For h = 2, the stronger invariant
SDD(C;2) distinguished all counter-examples
in R3 to the completeness of past invariants.

Theorem 3.10: for any m-point cloud C in a
metric space, SDD(C;h) is computable in time
O(mh+1/(h − 1)!) and has Lipschitz constant 2
in EMD, time O(h!(h2 + m1.5 logh m)l2 + l3 log l).



Simplexwise Centered Distribution
In Rn, fix the center of a cloud C at p0 = 0 ∈ Rn.

For any ordered subset A = (p1, . . . ,pn−1) ⊂ C,
OCD(C;A) is the pair of the distance matrix
D(A) and matrix M with m − n + 1 permutable
columns of n distances |q − pi | for q ∈ C − A.

To reconstruct C ⊂ Rn up to rigid motion, we
add the sign of the determinant on the vectors
from each q ∈ C − A to the points p0, . . . ,pn−1.

SCD(C) is the unodered set of classes of
OCD(C;A) for all (n − 1)-point subsets A ⊂ C.



For each 1-point subset A = {p} ⊂ S, the
distance matrix D(A ∪ {0}) on two points
is one number 1. Then M(S;A ∪ {0}) has

m − n + 1 = 3 columns. For p1 = (1,0), we have
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columns are ordered as p2, p3, p4. The sign in
the bottom right corner is 0 because p1,0,p4 are
in a straight line. By the rotational symmetry,

SCD(S) is one OCD = [1,
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The strength σ(B) of a simplex B
The discontinuity of a sign in degenerate cases
such as 3 points in a line is resolved by the new
strength of a simplex σ(B) = V 2/p2n−1, where
V is the volume, p is the half-perimeter of B.

The strength of a triangle B ⊂ R2 with sides

a,b, c is σ(B) =
(p − a)(p − b)(p − c)

p2 , which is

‘roughly linear’ unlike the ‘quadratic’ area of B.

Theorem 4.4: in Rn, the strength σ is Lipschitz
continuous with constants c2 = 2

√
3, c3 ≈ 0.43.



Complete invariant SCD in Rn

Theorem 4.7: for any cloud C of m unlabeled
points in Rn, the Simplexwise Centered
Distribution SCD(C) is a complete invariant
under rigid motion, and is computable in time
O(mn/(n − 4)!), has Lipschitz constant 2 in the
Earth Mover’s Distance (EMD), computable in
time O((n − 1)!(n2 + m1.5 logn m)l2 + l3 log l),
l is the number of different OCDs in SCDs.

The complete isometry invariant is the pair of
SCD(C) and SCD(C) with reversed signs.



Geometric Data Science
The major breakthroughs are the continuous
isometry classifications for discrete point sets:
finite (CVPR 2023), periodic (NeurIPS 2022).


