
Attribute-Preserving Face Dataset 
Anonymization via Latent Code 

Optimization
Simone Barattin*1, Christos Tzelepis*2, Ioannis Patras1, and Nicu Sebe1

1University of Trento, 2Queen Mary University of London
(* denotes equal contribution) - TUE-PM-371



Goal of the work

● Anonymize the identity of face images

● Maintain the original face attributes



Background

● Face obfuscation
○ Naive masking methods [1]
○ k-Same algorithm [2]

● Generative face anonymization
○ CIAGAN [3]
○ DeepPrivacy [4]

[1] Datong Chen, Yi Chang, Rong Yan, and Jie Yang. "Tools for protecting the privacy of specific individuals in video.", EURASIP 2007
[2] Elaine M Newton, Latanya Sweeney, and Bradley Malin. "Preserving privacy by de-identifying face images.", IEEE TKDE 2005
[3] Maxim Maximov, Ismail Elezi, and Laura Leal-Taixé. “CIAGAN: Conditional identity anonymization generative adversarial networks”, CVPR 2020
[4] Hukkelås, Håkon, Rudolf Mester, and Frank Lindseth. "DeepPrivacy: A generative adversarial network for face anonymization.", ISVC 2019

CIAGAN [3]
DeepPrivacy [4]



Background

● Costly and unstable training of 
additional neural networks

● Facial attributes and expression are 
not preserved

Challenges and proposed solution

● Use only pre-trained models
○ Greatly reduces the 

computational cost
● Use a novel loss to retain 

fine-grained facial details
○ Meanwhile the identity is 

changed
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Anonymization process

● Proposed identity loss
○ 𝜀A denotes the pre-trained ArcFace [1] encoder
○ Controls the similarity between the real and the anonymized faces via the hyperparameter m

● Proposed attribute preservation loss
○ 𝜀F denotes the pre-trained FaRL [2] visual encoder (ViT-based)
○ Imposes the preservation of the real images’ facial features on the anonymized ones

[1] Jiankang Deng, Jia Guo, Jing Yang, Niannan Xue, Irene Cotsia, and Stefanos P Zafeiriou. “ArcFace: Additive angular margin loss for deep face 
recognition.”, PAMI 2021
[2] Yinglin Zheng, Hao Yang, Ting Zhang, Jianmin Bao, Dong-dong Chen, Yangyu Huang, Lu Yuan, Dong Chen, Ming Zeng, and Fang Wen. “General facial 
representation learning in a visual-linguistic manner”, CVPR 2021



Anonymization process



Experiments

●  CelebA-HQ [1]
○ 30000 frontal-face images
○ 40 facial attribute annotations
○ Test the ability of the method to anonymize high quality images

● Labelled Faces in the Wild (LFW) [2]
○ 13000 in-the-wild images
○ No facial attribute annotation is provided
○ Test the ability of the method to anonymize images in-the-wild

Datasets

[1] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep learning face attributes in the wild.”, ICCV 2015
[2] Huang, Gary B., et al. "Labeled faces in the wild: A database for studying face recognition in unconstrained environments." Workshop on faces in 'Real-Life' Images: 
detection, alignment, and recognition. 2008.



Results

● Image quality evaluation
○ Fréchet Inception Distance (FID)
○ Face detection rate (MTCNN, dlib)

● Face de-identification evaluation
○ Face re-identification



Results

● Attribute preservation evaluation
○ Attribute classification approach
○ Accuracy of the trained classifier

● Use pseudo-labels for LFW
○ Two pre-trained attribute classifiers
○ Lin et al. [30] predicts CelebA-HQ’s attributes
○ Jiang et al. [22] predicts 5 facial attributes



Results
m=1.0 m=0.5 m=0.0
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Code: 
https://github.com/chi0tzp/FALCO
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