Sliced optimal partial transport

Yikun Bai^{1a} Bernhard Schmitzer^{1b} Mathew Thorpe^c Soheil Kolouri^a

^aDepartment of Computer Science, Vanderbilt University

^bInstitude of Computer Science, Gottingen University

^cThe Allen Turing Institude

May 27, 2023

¹These authors have equal contribution.

Introduction: optimal transport problem (OT)

$$\mathsf{OT}(\mu, \nu) := \inf_{\gamma \in \Gamma(\mu, \nu)} \int_{\Omega^2} c(x, y) d\gamma(x, y)$$

where $\Omega \subset \mathbb{R}^d$, $\mu, \nu \in \mathcal{P}(\Omega)$, $\Gamma(\mu, \nu) := \{ \gamma \in \mathcal{P}(\Omega^2) : \gamma_1 = \mu, \gamma_2 = \nu \}$

- Statistics: hypothesis test, statistical inference
 - Machine learning: GAN, VAE, transfer learning
- Limitation: Requires equal total amount of mass between the two measures.

◆□▶◆□▶◆□▶◆□▶ □ りへで

Introduction: optimal partial transport (OPT)

$$\mathsf{OPT}_{\lambda}(\mu,\nu) := \inf_{\gamma \in \Gamma_{\leq}(\mu,\nu)} \int_{\Omega^2} c(x,y) d\gamma(x,y) + \lambda(|\mu - \gamma_1|_{TV} + |\nu - \gamma_2|_{TV}).$$

where $\mu, \nu \in \mathcal{M}_+(\Omega)$, $\Gamma_{\leq}(\mu, \nu) := \{ \gamma \in \mathcal{M}_+(\Omega^2) : \gamma_1 \leq \mu, \gamma_2 \leq \nu \}$, and $\lambda \geq 0$.

• **Benefits**: Partial matching and comparison of measures with unequal mass.

Introduction: Empirical OPT

If $\mu = \sum_{i=1}^n \delta_{\mathsf{X}_i}, \nu = \sum_{j=1}^m \delta_{\mathsf{Y}_j}$, OPT problem becomes

$$OPT_{\lambda}(\mu, \nu) = \inf_{\gamma \in \Gamma_{\leq}(\mu, \nu)} \sum_{i,j} c(x_i, y_j) \gamma_{ij} + \lambda(m + n - 2|\gamma|)$$

where $\Gamma_{\leq}(1_n, 1_m) := \{ \gamma \in \mathbb{R}_+^{n \times m} : \gamma 1_m \leq 1_n, \gamma^T 1_n \leq 1_m \}, |\gamma| = \sum_{ij} \gamma_{ij}$. Challenge:

High dimension linear programming problem

Existing methods:

- Network simplex (Bonneel et al. 2011): $\mathcal{O}((n+m)nm)$
- Sinkhorn algorithm (Chizat et al. 2018): $\mathcal{O}(\frac{1}{\epsilon^3}nm)$, where ϵ is weight of entropic regularization
- Dynamic programming (Sato et al. 2020): $\mathcal{O}(\ln^2(n+m)(n+m))$. Requires tree metric assumption.

Our work: Solve the 1D OPT

In \mathbb{R} , consider the empirical OPT problem can be simplified to the following linear alignment problem [Bai et al. 2022, Proposition 3.1]

$$\mathsf{OPT}_{\lambda}(\mu,\nu) = \min_{L} \sum_{i \in \mathsf{Dom}(L)} c(x_i,y_{L[j]}) + \lambda(n+m-2|\mathsf{dom}(L)|)$$

where $L:[1:n] \rightarrow [1:m]$ is partial increasing bijection.

Accuracy and time complexity of the main algorithm

By [Bai et al. 2022, Theorem 4.4]:

- (Accuracy) Algorithm 1 solves the empirical OPT problem.
- (Time complexity) In the worst case, the time complexity of algorithm 1 is $\mathcal{O}(n \max(n, m))$.

(a) uniform distributions

(b) Gaussian mixture distributions

Sliced optimal partial transport (SOPT)

$$\begin{split} \textit{SOPT}_{\lambda}(\mu,\nu) := \int_{\mathbb{S}^{d-1}} \mathsf{OPT}_{\lambda(\theta)}(\langle \theta,\cdot \rangle_{\#}\mu, \langle \theta,\cdot \rangle_{\#}\nu) d\sigma(\theta) \\ \approx \frac{1}{T} \sum_{t=1}^{T} \mathsf{OPT}_{\lambda_{t}}(\langle \theta,\cdot \rangle_{\#}\mu, \langle \theta,\cdot \rangle_{\#}\nu) d\sigma(\theta) \end{split}$$

where $\mathbb{S}^{d-1}=\{x\in\mathbb{R}^d:\|x\|^2=1\}$, $\sigma=\mathrm{Unif}(\mathbb{S}^{d-1})$, $\mathrm{supp}(\sigma)=\mathbb{S}^{d-1}$, $\lambda:\mathbb{S}^{d-1}\to\mathbb{R}_{++}$ is L_1 function, and $f_\#\mu$ is the push-forward measure of μ for any (measurable) f.

- *SOPT* is a metric in $\mathcal{M}_+(\Omega)$ if c is a metric.
- *SOPT* can be regarded as a proxy of $OPT_{\lambda}(\mu, \nu)$ distance.

Experiment: Noisy Point Cloud Registration

In \mathbb{R}^3 , given two measure (μ, ν) with $\nu = T_\# \mu$ where mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ has form: $T(x) = sRx + \beta$, R is rotation matrix, scaling s>0, translation $\beta \in \mathbb{R}^3$. Given samples with noise corruption, how to estimate T?

Experiment: Color adaptation

Summary

Our contributions:

- We proposed a new quadratic time algorithm for 1D OPT problem.
- We propose the so called sliced-optimal partial transport distance (SOPT).
- We demonstrate the applications of SOPT in point cloud registration and color adaptation.

Future's work:

Potential applications of SOPT in GAN, VAE

Reference

- Bai, Yikun et al. (2022). "Sliced optimal partial transport". In: arXiv preprint arXiv:2212.08049.
- Bonneel, Nicolas et al. (2011). "Displacement Interpolation Using Lagrangian Mass Transport". In: ACM Transactions on Graphics (SIGGRAPH ASIA 2011) 30.6.
- Chizat, Lenaic et al. (2018). "Scaling algorithms for unbalanced optimal transport problems". In: *Mathematics of Computation* 87.314, pp. 2563–2609.
- Sato, Ryoma et al. (2020). "Fast and robust comparison of probability measures in heterogeneous spaces". In: arXiv preprint arXiv:2002.01615

Thank you