

Diffusion Video Autoencoders: Toward Temporally Consistent Face Video Editing via Disentangled Video Encoding

CVPR 2023 (TUE-PM-188)

Gyeongman Kim¹ Hajin Shim¹ Hyunsu Kim² Yunjey Choi² Junho Kim² Eunho Yang^{1,3}

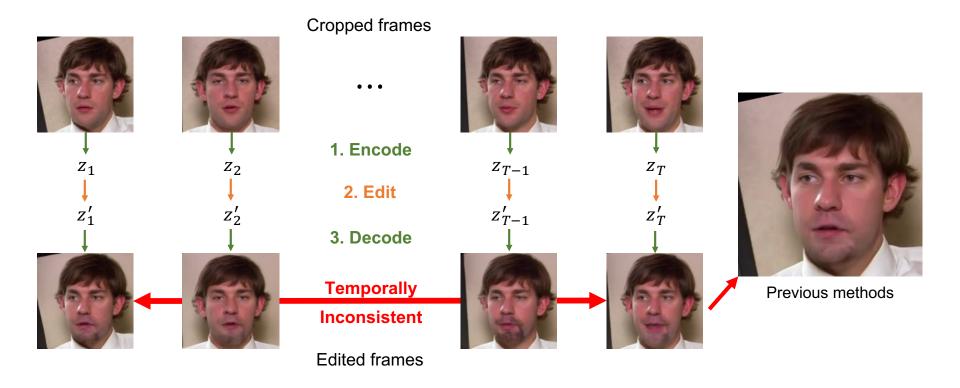
¹KAIST ²NAVER AI Lab ³AITRICS

Machine Learning & Intelligence Laboratory

1 min Summary

Problem: Temporal consistency

- Face video editing: The task of modifying certain attributes of a face in a video
- All previous methods use GAN to edit faces for each frame independently
- → Modifying attributes, such as beards, causes **temporal inconsistency** problem

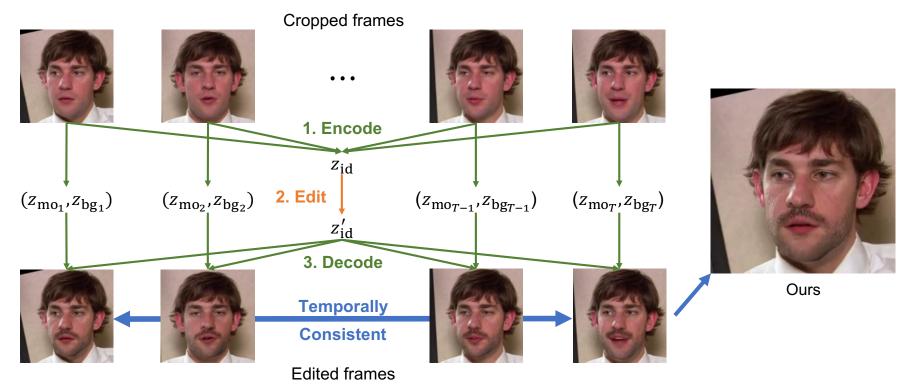


Solution: Decompose a video into a single identity, etc.

Diffusion Video Autoencoders

- Decompose a video into {single identity z_{id} , each frame (motion z_{mo_t} , background z_{bg_t})}
- video \rightarrow decomposed features $\left(\mathbf{z}_{\mathrm{id}}, \left\{z_{\mathrm{mo}_t}\right\}_{t=1}^T, \left\{z_{\mathrm{bg}_t}\right\}_{t=1}^T\right) \rightarrow$ video

→ Entire frame can be edited **consistently** with **single modification** of the identity feature



Solution: Decompose a video into a single identity, etc.

Diffusion Video Autoencoders

(ICCV 2021)

- Decompose a video into {single identity z_{id} , each frame (motion z_{mo_t} , background z_{bg_t})}
- video \Rightarrow decomposed features $\left(z_{id}, \left\{z_{mo_t}\right\}_{t=1}^T, \left\{z_{bg_t}\right\}_{t=1}^T\right) \Rightarrow$ video
- → Entire frame can be edited **consistently** with **single modification** of the identity feature

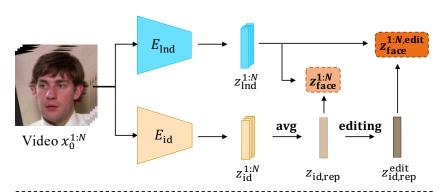
Only ours successfully produces the **temporally consistent** result!

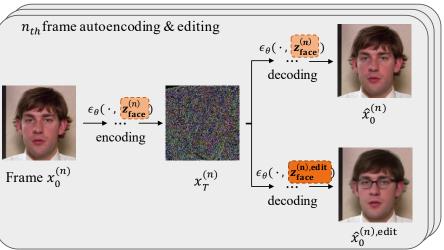
(arXiv 2022)

(ECCV 2022)

Paper Details

Method Overview: video autoencoding & editing pipeline





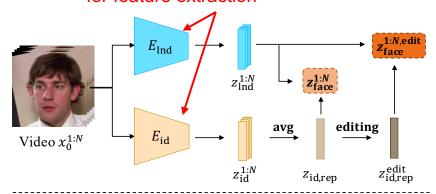
Design a diffusion video autoencoder:

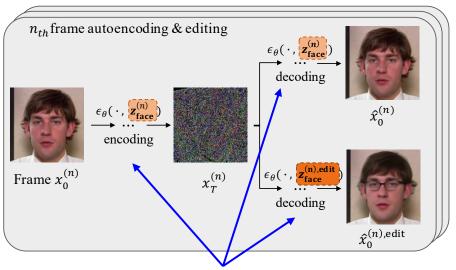
$$x_0^{(n)} \rightarrow \left(z_{\text{face}}^{(n)}, x_T^{(n)}\right) \rightarrow x_0^{(n)}$$

- High-level semantic latent $z_{\rm face}^{(n)}$ (512-dim): consist of representative **identity** feature $z_{\rm id,rep}$ and **motion** feature $z_{\rm lnd}^{(n)}$
- Noise map $x_T^{(n)}$:
 Only information left out by $z_{\rm face}^{(n)}$ is encoded (=background information)
- Since background information shows **high variance** to project to a low-dimensional space,
 encode background at noise map $x_T^{(n)}$

Method Overview: video autoencoding & editing pipeline

Frozen pre-trained encoders for feature extraction





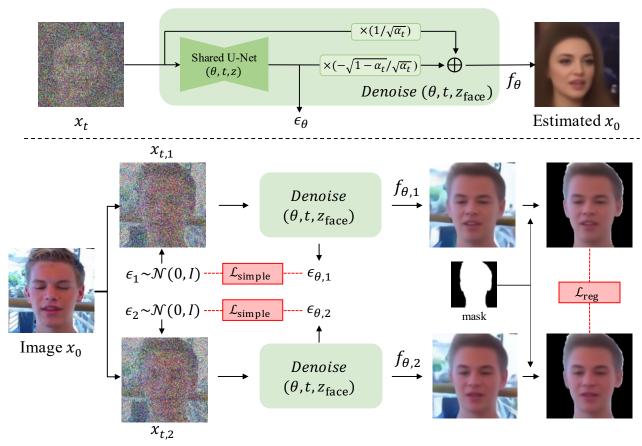
In order to nearly-perfect reconstruct, use DDIM which utilizes deterministic forward-backward process

• Design a diffusion video autoencoder:

$$x_0^{(n)} \rightarrow \left(z_{\text{face}}^{(n)}, x_T^{(n)}\right) \rightarrow x_0^{(n)}$$

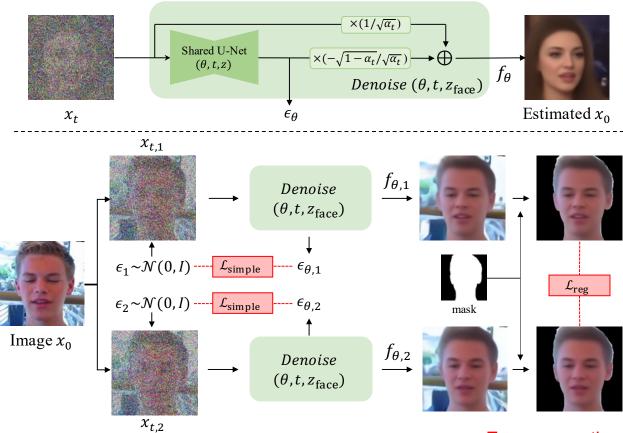
- High-level semantic latent $z_{\rm face}^{(n)}$ (512-dim): consist of representative **identity** feature $z_{\rm id,rep}$ and **motion** feature $z_{\rm lnd}^{(n)}$
- Noise map $x_T^{(n)}$:
 Only information left out by $z_{\rm face}^{(n)}$ is encoded (=background information)
- Since background information shows **high** variance to project to a low-dimensional space, encode background at noise map $x_T^{(n)}$

Method Overview: training objective



- $\mathcal{L}_{\text{simple}} = \mathbb{E}_{x_0 \sim q(x_0), \epsilon_t \sim \mathcal{N}(0, I), t} \| \epsilon_{\theta}(x_t, t, z_{\text{face}}) \epsilon_t \|_1$
 - Simple version of DDPM loss
- $\mathcal{L}_{\text{reg}} = \mathbb{E}_{x_0 \sim q(x_0), \epsilon_1, \epsilon_2 \sim \mathcal{N}(0, I), t} \| f_{\theta, 1} \odot m f_{\theta, 2} \odot m \|_1$
 - For clear decomposition btw background and face information

Method Overview: training objective

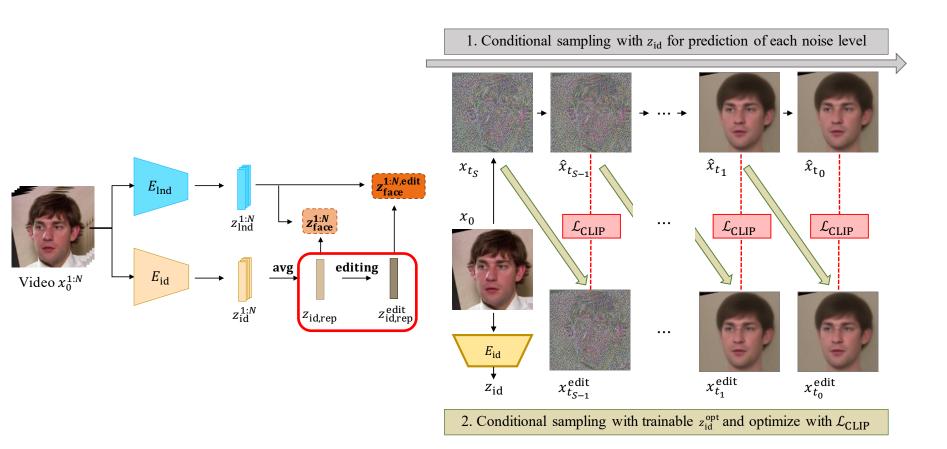


- $\mathcal{L}_{\text{simple}} = \mathbb{E}_{x_0 \sim q(x_0), \epsilon_t \sim \mathcal{N}(0, I), t} \| \epsilon_{\theta}(x_t, t, z_{\text{face}}) \epsilon_t \|_1$
 - Simple version of DDPM loss
- $\mathcal{L}_{\text{reg}} = \mathbb{E}_{x_0 \sim q(x_0), \epsilon_1, \epsilon_2 \sim \mathcal{N}(0, I), t} \| f_{\theta, 1} \odot m f_{\theta, 2} \odot m \|_1$
 - For clear decomposition btw background and face information

Encourages the useful information of the image to be well contained in the semantic latent z_{face}

Effect of noise in x_t on the face region will be reduced and $z_{\rm face}$ will be responsible for face features

Method Overview: video editing framework



- Classifier-based editing
 - Train a linear classifier for each attribute of CelebA-HQ in the identity feature z_{id} space
- CLIP-based editing
 - Minimize CLIP loss between intermediate images with drastically reduced number of steps $S \ll T$

Experiment: Reconstruction

Table 1. Quantitative reconstruction results on the randomly chosen 20 videos in VoxCeleb1 test set. The reported values are the mean of the averaged per-frame measurements for each video.

Method	SSIM ↑	MS-SSIM ↑	LPIPS ↓	MSE ↓	
e4e [34]	0.509	0.761	0.157	0.037	► Latent Transformer
PTI [27]	0.765	0.939	0.063	0.007	← STIT
Ours $(T=20)$	0.540	0.905	0.228	0.016	
Ours ($T = 100$)	0.922	0.989	0.045	0.002	

 Our diffusion video autoencoder with T = 100 shows the best reconstruction ability and still outperforms e4e with only T = 20

Experiment: Temporal Consistency

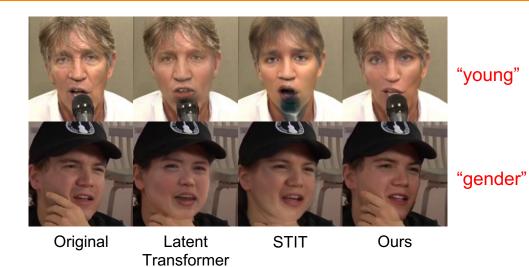
Table 2. **Quantitative results** to evaluate temporal consistency. Ours show the best global coherency and comparable local consistency to the baselines.

Method	TL-ID	TG-ID
Yao <i>et al</i> . [41]	0.989	0.920
Tzaban <i>et al</i> . [35]	0.997	0.961
Xu <i>et al</i> . [40]	1.002	0.983
Ours	0.995	0.996

interpret as being consistent
 as the original is when their values are close to 1

- Only our diffusion video autoencoder successfully produces the **temporally consistent** result
- We greatly improve global consistency (TG-ID)

Experiment: Editing Wild Face Videos



• Owing to the reconstructability of diffusion models, editing **wild videos** that are difficult to inversion by GAN-based methods becomes possible.

Experiment: Decomposed Features Analysis

• Generated images with switched identity, motion, and background feature **confirm** that the features are **properly decomposed**

Experiment: Ablation Study

- Without the regularization loss, the identity changes significantly according to the random noise
 - we can conclude that the regularization loss helps the model to decompose features effectively

Conclusions

- Our contribution is four-fold:
 - We **devise** diffusion video autoencoders that decompose the video into a single timeinvariant and per-frame time-variant features for temporally consistent editing
 - Based on the decomposed representation of our model, face video editing can be conducted by editing only the single time-invariant identity feature and decoding it together with the remaining original features
 - Owing to the <u>nearly-perfect reconstruction ability</u> of diffusion models, our framework can be utilized to edit **exceptional cases** such that a face is partially occluded by some objects as well as usual cases
 - In addition to the existing predefined attributes editing method, we propose a <u>text-based identity editing method</u> based on the local directional CLIP loss for the <u>intermediately generated product</u> of diffusion video autoencoders

Thank you!

Any Questions?

