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Instance-specific and Model-adaptive Supervision (iMAS)

 A standard teacher-student framework:
 Quantitative hardness analysis: 1) unlabeled instance 2) model’s training status
 Hardness-based Model-adaptive supervision: 1) augmentations 2) unsupervised loss
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Why Semi-supervised Semantic Segmentation (SSS)?
The success of supervised semantic segmentation depends closely on large datasets 

with high-quality pixel-level annotations. 
Delicate and dense pixel-level labelling is costly and time-consuming, which 

becomes a significant bottleneck in practical applications with limited labelled data.

How recent SSS work? (leveraging the unlabeled data)
Pseudo-labeling: Train on labeled data and then generate pseudo-labels on unlabeled data, 

iteratively adding high-confidence predicted unlabeled data to labeled set.
Consistency regularization: Apply data or model perturbations and enforce the 

prediction consistency between two differently-perturbed views for unlabeled data.

Background
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Motivation
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 Motivations：
 Weakness1: Despite their promising performance, recent SSS studies come at the 

cost of introducing extra network components or additional training procedures.
 Weakness2: Most existing studies treat all unlabeled data equally and barely 

consider the differences and training difficulties among unlabeled instances. 
 We believe that differentiating unlabeled instances can promote instance-specific 

supervision to adapt to the model's evolution dynamically.

 Our Goal: instance-specific and model-adaptive supervision (iMAS)
 all the operations on different unlabeled instances should 
 adapt to the training status of the model 
 be adjusted based on their learning difficulties
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Instance-specific and Model-adaptive Supervision (iMAS)

 A standard teacher-student framework:
 Quantitative hardness analysis: 1) unlabeled instance 2) model’s training status
 Hardness-based Model-adaptive supervision: 1) augmentations 2) unsupervised loss
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Method (cont.)
• Quantitative hardness analysis 

• A class-weighted teacher-student symmetric IoU.
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Method (cont.)
• Model-adaptive supervision

• Hardness-adaptive data perturbations:
• Intensity-based augmentations

• Cut-mix-based augmentations

• Hardness-adaptive unsupervised loss:
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Experiments: Comparison with SOTAs

rbg gt sup ours
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Experiments (Cont.)
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 In this paper, we highlight the instance uniqueness and propose iMAS, 
an instance-specific and model-adaptive supervision for semi-
supervised semantic segmentation.

Relying on our class-weighted symmetric hardness-evaluating 
strategies, iMAS treats each unlabeled instance discriminatively and 
employ model-adaptive augmentation and loss weighting strategies on 
each instance.

Without introducing additional networks or losses, iMAS can 
remarkably improve the SSS performance. 

Conclusion
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Thank You
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Experiments (Cont.)


