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Overview

* Disentanglement is a desired property in generative models.

* E.g., a disentangled model can generate a person with expression changed but identity preserved.
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* Many generative models (e.g., GANs) inherently have this disentanglement property.
* QOur research question:

Does a pre-trained text-to-image model have the disentanglement capability?
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* Many generative models (e.g., GANSs) inherently have this property.
* QOur research question:

Does a pre-trained text-to-image model have the disentanglement capability?
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Overview

* In this work, we discover the disentanglement capability in text-to-image diffusion model.
* QOur finding leads to a simple disentangle editing framework.

* The framework can effectively edit a wide range of attributes without changing the contents.

ute Original + Attribute ~ Original Image Original + Attribute
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Disentanglement in Diffusion: Preliminary Exploration

* We find the stable diffusion model inherently enables disentanglement.

* Goal: Generate an image of the same person with only facial expression changed.
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Disentanglement in Diffusion: Preliminary Exploration

c(®(style-neutral): “A photo of person”

¢ (with style): “A photo of person with smile”

* Original: Directly feed c(©).

(a person, with no smile)
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Disentanglement in Diffusion: Preliminary Exploration

c(®(style-neutral): “A photo of person”

¢ (with style): “A photo of person with smile”

* Case 1: Full replacement

(a person, with no smile)

(smiling, but change identity)
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Disentanglement in Diffusion: Preliminary Exploration

c(®(style-neutral): “A photo of person”

¢ (with style): “A photo of person with smile”

* Case 2: Partial replacement

(a person, with no smile)

(smiling, but change identity)

(smiling and preserve identity)




Disentanglement in Diffusion: Preliminary Experiment

Goal: Generate an 1mage of the same person with only facial expression changed.

Consider two text input embeddings:
c(®: “A photo of person”

c¢D: “A photo of person with smile”

Conclusion:
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» The stable diffusion model inherently enables disentanglement.

* The disentanglement can be triggered by partially replacing the text embeddings.



Optimizing for Disentanglement

* Our method optimizes a soft combination of two text embeddings:

e ¢c®. “A castle”

o ¢M:  “A children drawing of castle”
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* Our method optimizes a soft combination of two text embeddings:
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e ¢©: A castle”

o ¢M:  “A children drawing of castle”

—

* The stable diffusion conditions on ¢; to synthesize image with modified style

(children drawing).

e A; Optimization:

e CLIP loss to control style

* Perceptual loss to preserve content
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Optimizing for Disentanglement

* Our method optimizes a soft combination of two text embeddings:

e ¢©: A castle”

o ¢M:  “A children drawing of castle”

—

* The stable diffusion conditions on ¢; to synthesize image with modified style

(children drawing).
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* A4 Can be transferred to novel
images and lead to similar
editing effects.

(G R0
o

@7 ) c=x e+ (1—A)c®
Fixed Diffusion Model

T t+1 t 0



Experiment: Disentanglement Capability

* Our method 1s able to disentangle a wide range of attributes.
* Global attributes: scenery styles, architecture materials, etc.

* Local attributes: facial expressions, etc.

Original Image  Original + Attribute Original Image  Original + Attribute Original Image  Original + Attribute Original Image  Original + Attribute
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A photo of person, young
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A photo of church exterior, golden A photo of person, Egyptian mural style

view, Cyberpunk style



Experiment: Image Editing

* Based on the subjective study, our method shows advantages in image editing.

* Datasets: LSUN Church (Scene), Celeba Face (Person)

* Baseline: DiffusionCLIP
* Our method outperforms DiffusionCLIP in 6 out of 8 attributes with following metrics:

* Attribute Similarity
[ Ours
/1 DiffusionCLIP

* (Content Preservation
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Experiment: Image Editing

* Our method shows competltlve edltmg performance compared with strong baselines.
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Limitations

Scenes Person
Global Styles (children drawing, cyberpunk, anime), Building appearance  Styles (renaissance, Egyptian mural, sketch, Pixar)
v (wooden, red brick), Weather & time (sunset, night, snowy) Appearance (young, tanned, male)
Local Cherry blossom, rainbow, foothills Expressions (smiling, crying, angry)
X Small edits Cake toppings, remove people on the street Hats, hair colors, earrings

* We explore a wide range of attributes and
find small edits are hard to be disentangled.

e Diffusion model has weaker control over

R S———

these ﬁne_ grained detaﬂs ) A photo of person, wearing hat A cake, jelly beans decorations



Thank you!
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