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Motivation

* Networks trained on datasets achieve SOTA denoising performance, but
building a dataset is difficult

* Dataset free methods require heavy compute, have poor performance, or
do not generalize to different noise distributions

* We propose a novel dataset free algorithm that performs well on different
noise models and levels, and is fast to execute even on a CPU

Setup

e Zero-Shot: only noisy test image is given

* Blind: no information on noise distribution or level



Related work

e Supervised: clean-noisy image pairs
* Self-Supervised: only noisy images
e Zero-Shot: no data available

BM3Dj Deep Image Prior (DIP)2]

Self2Self (S2S)3]



Drawbacks of existing zero-shot methods

 BM3D: works well only for Gaussian noise and requires noise level as input
* DIP: poor performance & early stopping iteration is critical

¢ S2S:
" Long denoising time (1.25 hrs for one 256 x 256 img)
= Works bad in regime of low noise levels
= Relies heavily on ensembling

** Goal: reach a good trade-off between performance and compute



1)

2)

Method

Convolve the noisy test image with two fixed filters, which yields
two downsampled images

Train a lightweight network with regularization to map one
downsampled image to the other

Elements

Downsampling scheme Loss function Lightweight network



Downsampling Scheme
motivated by Neighbour2Neighbour [5]

Assuming that nearby pixels of clean image are highly correlated, while noise is
Independent and unstructured

Downsample a noisy image into a pair of smaller images, which is an approximation of
two noisy observations of the same clean image

Kk 0 0.5 -05 0 l 2D depthwise convolution, with stride 2
1 — —_—
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Loss Function

* Residual learning Dfe (y) =y — fo (y)
£(9) — HDfe (yl) — Y2 “g motivated by Noise2Noise [4]

+ symmetricloss  Lyes. (8) = | D, (y1) — y2ll5 + | Do (v2) — ¥1l5

* Consisteny loss: to prevent overfitting/early stopping

Leons.(0) = ||Dfe (Y1) — Dy, (Y)IHS + “Dfe (}’2) — Dy, (Y)2||§

* Total loss [:(9) — £res.(9) Econs.(g)

Lightweight Network fe

e 2 Layers: 3x3 CNN, RelU, 3x3 CNN, ReLU, 1x1 CNN  ~ 20k parameters
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Natural noise

Dataset | ZS-N2N | DIP S2S | S2S* | BM3D
PolyU 36.92 37.07 | 37.01 | 33.12 | 36.11
SIDD 34.07 34.31 | 3398 | 30.77 | 28.19

Real-world camera noise
Image Photon | Photon | Confocal | Average
BPAE | Mice BPAE
ZS-N2N | 30.73 31.42 35.85 32.67
DIP 29.22 30.01 35.51 31.58
S2S 30.90 31.51 31.01 31.14
S2S* 29.49 29.99 29.54 29.67
BM3D 27.19 29.48 33.23 29.97
N2F [6] 30.93 31.07 36.01 32.67

Real-world microscope noise (FMDD)

RGB

Gray scale



Further Experiments

Newly proposed zero-shot method for grayscale denoising: Noise2Fast [6]

Noise2Fast 28.0 dB Ours 27.8 dB

I

» Our method produces sharper images




Poisson noise
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Conclusion

* Current zero-shot methods have poor performance or require heavy
compute

* Proposed a new zero-shot method that:
- Performs well
- Requires moderate compute (Time, Memory, CPU)
- Good generalization
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