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Diverse inputs
To ensure the reliability of the

Wh OOD deep learning models
y - high-stake tasks, such as medical

image analysis and autonomous

dete Ctlon? OO[;jggiction:

- differentiates between
in-distribution (ID) and
out-of-distribution (OoD) inputs at
test time.

A model should know what they
do not know.




Generalized OOD detection
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Reproduced from “Generalized OOD Detection: A Survey”, Jingkang Yang et al., 2021.




DiStI’ibllﬁOIlal - Semantic shift
Shift ! Ptrain (Y) 7& Ptest (Y)

The occurrence of new classes

Novelty detection and OOD detection

- Covariate shift
Ptrain (X) # Ptest (X)

Style change or adversarial examples

Sensory anomaly detection




Classification-based method

- Require a softmax-based (pre-trained) classifier
- Post-hoc method
- aims to design a suitable score function for distinguishing
between ID and OOD data accurately given a pre-trained
classifier.
- Enhancing method
- modifies features from intermediate layers to enhance
OOD performance for given score functions.
- Training loss modification
- incorporates OOD samples (e.g. outlier
exposure/synthesis) in the training procedure to perform
OOD detection.
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Post-hoc methods
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Overhead cost of retraining is avoided
Use both feature and predictive distribution

GradNorm and predictive normalized maximum likelihood (pNML)

Use both feature and logit:

Virtual-logit Matching (ViM)

Probability-based
MSP
KL-matching



Generalized
entro py Assumption: In-distribution test

samples close to the training data

are expected to result in a confident
prediction.

Gy(p) =>_;p;(1—p;),v€(0,1).




Considering sorted predictive
probabilities, Pj, = Pj, =+ = Pic,

Truncati()n our score is designed to capture

small entropy variations in the
top-M classes.

The final score reads as

~Gy(p) ==Y p] (L—pi,)"




Selected Results
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Selected Results

Openlmage-O Textures iNaturalist ImageNet-O Average

OOD Method

AUROCT FPR9S+ AUROCT FPROS: AUROCT FPR9S: AUROCT FPR9S+  AUROCT  FPRYS ¢
MSP [4] 86.62 55.87 82.58 63.20 90.45 44.01 66.56 82.97 81.55 61.51
MaxLogit [1] 86.26 5233 B257 59.18  89.82 43.41 68.77 76.47 81.85 57.85

EnergyBased [5] 83.91 55.87  80.52 62.79  86.89 51.55  69.01 73.99 80.08 61.05

% GradNorm [7] 54.82 78.12  60.31 76.58  56.83 75.14  51.02 85.47  55.75 78.83
S ODIN [6] 86.80 50.74  83.10 58.12  89.62 43.79  68.42 77.09 81.98 57.44
ReAct” 84.21 55.69  80.96 62.70  87.03 51.29  69.34 74.10  80.39 60.94
Shannon 81.98 52.06  83.97 59.18  91.48 41.56  68.99 70.71  83.09 57.63
GEN 89.83 49.04 86.19 55.65 93.27 35.59  73.69 77.83 85.74 54.53
GEN + ReAct” 90.07 49.00 86.62 55.66 93.38 3554 7411 77.87 86.04 54.52
KL Matching [1]  89.03 50.57  86.10 55.86  92.45 36.05  72.69 77.97  85.07 55.11
Mabhalanobis [2]  89.56 50.86  91.99 37.62 9237 42.05  81.89 71.57  88.95 50.52
% ReAct [8] 79.84 54.40  81.92 54.44  82.80 46.29  69.03 72.87 78.40 57.00
§- pNML [9] 90.61 41.76 8991 37.20 93.49 31.42 73.94 71.12  86.99 45.38
~ Residual [3] 87.14 56.00  91.90 36.84 89.41 48.04  81.22 71.20 87.42 53.02
ViM [3] 91.85 43.16 93.43 30.04 93.47 37.41 83.07 66.72 90.45 44.33

GEN + ReAct [8] 90.59 46.94 88.76 50.91  93.89 32.70  75.76 76.76  87.25 51.83
GEN + Residual  92.23  42.05 93.01 31.69 9436 33.85 82.58 69.24 90.55 44.21




Conclusion

- — 9 GEN (Ours)+ReAct*
v' GEN uses output probabilities only. 8 90 “GEN (Ours)
o
v It does not use any training data statistics. <Dt
— 88
. P . ®)
v It does not require re-training and/or outlier it _Msp %ODIN
exposure. = wMaxLogit
e 86
Yet it performs very well across four datasets and :C)
six architectures, meaning that it can potentially be 8'84 r%ﬁgfgrsy+ReAct*
used in more constrained model deployment 66 68 70 72 72 76 78

scenarios! ImageNet-O (AUROC)



