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Wow! Deep learning of 
neuron networks has 
achieved great success in 
many computer vision 
tasks, such as image 
classification.

But the success relies on a 
large amount of training 
data. Collecting and 
annotating data for all 
domains and tasks is 
extremely expensive and 
time-consuming. 

Background
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We can tackle it with data-efficient 
learning, such as transfer learning, 
unsupervised domain adaptation, 
semi-supervised learning, and few-

shot learning.

Background

Learning System

Learning System

Source tasks
 (domains) 

Target task
 (domain) 
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Problem Definition

Ø Goal: If the new task lacks high-quality training data, the knowledge from the 
previous task can be transferred to the new task.

Ø Focus: The typical scenario of domain adaptation — transfer knowledge of 
synthetic data to help classify real data.

Knowledge

Previous tasks/domains New tasks/domains

Recognize Apply

Share some commonality



Source Domain S

Unsupervised Domain Adaptation (UDA)
Ø When the source and target domains have different distributions but share all or part 

of semantic label space, transfer learning is equivalent to domain adaptation. 

Ø We consider the most practical setting — unsupervised domain adaptation, where 
target samples are all unlabeled.

Problem Definition
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Unsupervised Domain Adaptation!

Target Domain T
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Problem Definition

Ø Objective: Given labeled data on S, UDA is to predict class labels for unlabeled 
data sampled from T  by learning         and        on both                     and            .

• Source domain S                       
• Target domain T 
• Feature embedding function                               lifts any             to the feature space     , i.e.                   .
• Classifier                                with softmax at the top outputs a probability vector                                    .
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Related Work

l Synthetic Datasets: 
• VisDA-2017 [1], the first large-scale cross-domain object classification dataset, tailored 

for domain adaptation from simulation (152K) to reality (55K) across 12 classes.
• Generated by 3D rendering [2] and domain randomization [3].

l Pre-training and Then Fine-Tuning:
• Large-scale real data pre-training, e.g., utilizing JFT-300M [4] to study the influence of 

pre-training on downstream vision tasks.
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         : Domain discriminator with a gradient reversal layer at the bottom

• DANN [5] leverages a domain adversarial task to align the 
source and target domains as a whole, such that class labels 
can be transferred from source to target.
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[5] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, et al.. Domain-adversarial training of neural networks. JMLR, 2016.
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Domain-adversarial training

Domain-Level Feature AlignmentRelated Work



• MCD [6] uses individual task classifiers for the two domains 
to detect non-discriminative features by maximizing the 
classifier discrepancy and reversely learn a discriminative 
feature extractor by minimizing the classifier discrepancy.

10

S

T

)(

)(f

[6] K. Saito, K.Watanabe, Y. Ushiku, et al.. Maximum classifier discrepancy for unsupervised domain adaptation. CVPR, 2018.

Task classification loss

Task classification loss

Classifier trained on source data

Minimize classifier discrepancy
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Classifier discrepancy loss

Class-Level Feature AlignmentRelated Work



Comprehensive Study
Ø A New Benchmark: On the Utility of Synthetic Data with Blender for Bare Supervised Learning and Downstream 

Domain Adaptation.

Fig: Sample images from the training (left) and validation (middle) domains of VisDA-2017 
and our synthesized data (right).
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l Basic and important problems in the context of image classification:
    - Lack of comprehensive synthetic data research.
    - Insufficient exploration of synthetic-to-real transfer.

l Use a 3D rendering engine to build large-scale synthetic datasets (theoretically infinite) 
and do a comprehensive study on supervised learning and downstream transferring.
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[7] 邓志东。AI与自动驾驶：人工智能有可能实现人类智能的挑战性任务吗？AI TIME，2022年09月16日。

Comprehensive Study



 Contributions — explore the answers to the following interesting problems:
l Can we utilize synthetic data to verify typical theories and expose new findings? What will we find when 

investigating the learning characteristics and properties of our synthesized new dataset comprehensively?
l Can a model trained on non-repetitive samples converge? If it could, how will the new training strategy 

perform when compared to fixed-dataset periodic training? Can the comparison provide any significant 
intuitions for shortcut learning and other insights?

l How will the image variation factors in domain randomization affect the model generalization? What new 
insights can the study provide for 3D rendering?

l Can synthetic data pre-training be on par with real data pre-training when applied to downstream synthetic-
to-real classification adaptation? How about large-scale synthetic pre-training with a small amount of real 
data?

l Is our S2RDA benchmark more challenging and realistic? How does it differ from VisDA-2017?
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Comprehensive Study



l Existing works verify classical theories and reveal new findings on real data:
      - The process of acquiring real data cannot be controlled. 
      - The annotation accuracy cannot be guaranteed. 
      - There may be duplicate images in the training set and test set. 
      - The training set and test set are no longer IID.

l Use 3D rendering and domain randomization to generate IID synthetic data:
      - Verify learning insights on shortcut learning, PAC generalization, and variance-bias trade-off.
      - Explore the effects of changing data regimes and network structures on model generalization.
      - Key design: the traditional fixed-dataset periodic training vs. a new strategy of training on non-repetitive 
samples.
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Comprehensive Study — Bare Supervsied Learning
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l Training data:  
      - SubVisDA-10: 10 object classes common in VisDA-2017 [1] and ShapeNet [8], 130, 725 synthetic 
images, 46, 697 real images. 
      - Our 120K synthetic images.
      - Our mutually exclusive batches of synthesized samples per iteration (12.8M in total).

l Test data:
      - IID data: 60K samples that follow the same distribution as our synthesized training data.
      - IID data without background: 60K images to examine the dependency of network predictions on contexts.
      - OOD data: real images from SubVisDA-10.

l Network structures:
      - ResNet-50 [9].
      - ViT-B [10].
      - Mixer-B [11].
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Comprehensive Study — Bare Supervsied Learning

[8] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi and F. Yu. ShapeNet: An Information-Rich 3D Model 
Repository. ArXiv:1512.03012 [cs.GR], Stanford University --- Princeton University --- Toyota Technological Institute at Chicago, 2015.
[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CVPR, 2016.
[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.
[11] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, et al. MLP-Mixer: An all-MLP Architecture for Vision. NeurIPS, 2021.



l Fixed-Dataset Periodic Training vs. Training on Non-Repetitive Samples:
    - With strong data augmentation, the test results on synthetic data without background are good enough to show that the 
synthetically trained models do not learn shortcut solutions relying on context clues. 
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Tab: Fixed-dataset periodic training vs. training on non-repetitive samples. 
FD: Fixed Dataset, True (T) or False (F). DA: Data Augmentation, None (N), Weak (W), or Strong (S). BG: BackGround.

Comprehensive Study — Bare Supervsied Learning



l Evaluating Various Network Architectures:
    - In IID tests, ViT performs surprisingly poorly whatever the data augmentation is and even the triple number of training 
epochs does not improve much. 
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Comprehensive Study — Bare Supervsied Learning

Tab: Fixed-dataset periodic training vs. training on non-repetitive samples. 
FD: Fixed Dataset, True (T) or False (F). DA: Data Augmentation, None (N), Weak (W), or Strong (S). BG: BackGround.



l Impact of Model Capacity & Impact of Training Data Quantity:
    - There is always a bottleneck from synthetic data to OOD/real data, where increasing data size and model capacity brings no 
more benefits, and DA to bridge the distribution gap is indispensable except for evolving the image generation pipeline to 
synthesize more realistic images.
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Fig: Generalization accuracy 
w.r.t. model capacity.

Fig: Generalization accuracy w.r.t. 
training data quantity.

Comprehensive Study — Bare Supervsied Learning



l Impact of Data Augmentations:
    - For the data-unrepeatable training, IID and OOD generalizations are some type of zero-sum game w.r.t. the strength of data 
augmentation. 
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Comprehensive Study — Bare Supervsied Learning

Tab: Fixed-dataset periodic training vs. training on non-repetitive samples. 
FD: Fixed Dataset, True (T) or False (F). DA: Data Augmentation, None (N), Weak (W), or Strong (S). BG: BackGround.



l Explore how variation factors of an image affect the model generalization:
     - Object scale, material texture, illumination, camera viewpoint, and background.
     - Different rendering variation factors and even their different values have uneven importance to model generalization.
     - Stress the under-explored topic of data generation — AutoSimulate/Weighted Rendering [12].

Tab: Fix vs. randomize image variation factors.

20

Comprehensive Study — Assessing Image Variation Factors

[12] H. S. Behl, A. G. Baydin, R. Gal, P. H. S. Torr and V. Vineet. AutoSimulate: (Quickly) Learning Synthetic Data Generation. ECCV, 2020.



l Bare supervised learning on synthetic data results in poor performance in OOD/real tests:
     - Pre-training and then domain adaptation can improve. 
     - However, there is little research exploring the effects of pre-training on DA.

l Study how different pre-training schemes including synthetic data pre-training affect the 
practical, large-scale synthetic-to-real classification adaptation.
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Comprehensive Study — Exploring Pre-training for Domain Adaptation



l Pre-training data:
     - Ours: our synthesized 120K images of the 10 object classes shared by SubVisDA-10.
     - SynSL: our synthesized 12.8M images of the 10 classes for supervised learning.
     - SubImageNet: 25,686 images, the subset collecting examples of the 10 classes from ImageNet [13].
     - Ours+SubImageNet: our synthesized 120K images combined with SubImageNet.
     - ImageNet-990: the fine-grained subclasses for each of the 10 classes are merged into one.
     - ImageNet-990+Ours: ImageNet-990 combined with our 120K synthetic images.
     - ImageNet: the full set of ImageNet (1K classes).
     - MetaShift: 2.56M [14].

l Downstream task: SubVisDA-10.
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Comprehensive Study — Exploring Pre-training for Domain Adaptation

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei. Imagenet: A large-scale hierarchical image database. CVPR, 2009.
[14] W. Liang and J. Zou. MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts. ICLR, 2022.



l The Importance of Pre-training for DA:
     - DA fails without pre-training.
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Comprehensive Study — Exploring Pre-training for Domain Adaptation

Tab: Comparing different pre-training schemes. 
⋆ : Official checkpoint. Green or red: Best Acc. or Mean in each row. Ours w. SelfSup: Sup. pre-training with contrastive learning.

[15] S. Cicek and S. Soatto. Unsupervised domain adaptation via regularized conditional alignment. ICCV, 2019.
[16] H. Tang, K. Chen and K. Jia. Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering. CVPR, 2020.
[17] H. Tang, Y. Wang and K. Jia. Unsupervised domain adaptation via distilled discriminative clustering. Pattern Recognition, 2022.



l Effects of Different Pre-training Schemes:
     - Different DA methods exhibit different relative advantages under different pre-training data.
     - The reliability of existing DA method evaluation criteria is unguaranteed.
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Comprehensive Study — Exploring Pre-training for Domain Adaptation

Tab: Comparing different pre-training schemes. 
⋆ : Official checkpoint. Green or red: Best Acc. or Mean in each row. Ours w. SelfSup: Sup. pre-training with contrastive learning.



l Synthetic Data Pre-training vs. Real Data Pre-training:
     - Synthetic data pre-training is comparable to or better than real data pre-training — Synthetic data pretraining is 
promising.
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Comprehensive Study — Exploring Pre-training for Domain Adaptation

Tab: Comparing different pre-training schemes. 
⋆ : Official checkpoint. Green or red: Best Acc. or Mean in each row. Ours w. SelfSup: Sup. pre-training with contrastive learning.



l Synthetic Data Pre-training vs. Real Data Pre-training:
     - Synthetic data pre-training is comparable to or better than real data pre-training — Synthetic data pretraining is 
promising.
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Comprehensive Study — Exploring Pre-training for Domain Adaptation

Fig:  Learning process (Mean) of MCD (left) and DisClusterDA (right) when varying the pre-training scheme.



l Implications for Pre-training Data Setting:
     - Big Synthesis Small Real is worth deeply researching.
     - Pre-train with target classes first under limited computing resources.
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Comprehensive Study — Exploring Pre-training for Domain Adaptation

Tab: Comparing different pre-training schemes. 
⋆ : Official checkpoint. Green or red: Best Acc. or Mean in each row. Ours w. SelfSup: Sup. pre-training with contrastive learning.



l The Improved Generalization of DA Models:
     - Real data pre-training with extra non-target classes, fine-grained target subclasses, or our synthesized data added for 
target classes helps DA.
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Comprehensive Study — Exploring Pre-training for Domain Adaptation

Tab: Comparing different pre-training schemes. 
⋆ : Official checkpoint. Green or red: Best Acc. or Mean in each row. Ours w. SelfSup: Sup. pre-training with contrastive learning.



l Introduce a new, large-scale synthetic-to-real benchmark for classification adaptation (S2RDA):
     - S2RDA-49 + S2RDA-MS-39.
     - Provide a baseline performance analysis for representative DA approaches.
     - Set a more practical and challenging benchmark for future DA research.

Tab: Domain adaptation performance on S2RDA.
Fig: Sample images from the synthetic (left) domain and the real domains of S2RDA-49 (middle) and S2RDA-MS-39 (right).
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Comprehensive Study —  A New Synthetic-to-Real Benchmark



Future Work

Synthetic data are well suited for use as toy examples 
to verify existing deep learning theoretical results or 
explore new theories.

01

02 The comparison among various DA methods yields 
different or even opposite results when using 
different pre-training schemes. DA researchers 
should propose and follow evaluation metrics 
enabling effective and fair comparison.

We will consider more imaging parameters, e.g., 
randomizing the type and hue of the light, including 
physical objects with actual textures from YCB, and 
using the flying distractor.

05 Our new paradigm of empirical study for image 
classification can also be applied to other vision 
tasks of semantic analysis, e.g., Kubric and 
HyperSim for segmentation and object detection.

03

Synthetic data as a new benchmark

More realistic simulation synthesis

Applicability to other vision tasks

Evaluation metrics robust to pre-training

30

04 Our proposed paradigm of empirical study can 
generalize to any data generation pipeline. Our 
findings may be data source specific and the 
generalizability to other pipelines like GANs, 
NeRFs, and AutoSimulate is to be explored.

To explore deep learning based data generation



A Takeaway Message

To solve the basic and important problems in the context of image classification, such as the lack of 
comprehensive synthetic data research and the insufficient exploration of synthetic-to-real transfer, we 
propose to exploit synthetic datasets to explore questions on model generalization, benchmark pre-
training strategies for DA, and build a large-scale benchmark dataset S2RDA for synthetic-to-real 
transfer, which can push forward future DA research.
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Code and datasets



References
[1] Xingchao Peng, Ben Usman, Neela Kaushik, et al.. VisDA: A Synthetic-to-Real Benchmark for Visual Domain Adaptation. CVPRW, 2018.
[2] M. Denninger, M. Sundermeyer, D. Winkelbauer, Y. Zidan, D. Olefir, M. Elbadrawy, A. Lodhi, and H. Katam. Blenderproc. Preprint arXiv:1911.01911, 2019.
[3] J. Tobin et al.. Domain randomization for transferring deep neural networks from simulation to the real world. IEEE International Conference on Intelligent Robots and 
Systems, 2017.
[4] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable effectiveness of data in deep learning era. ICCV, 2017.
[5] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, et al.. Domain-adversarial training of neural networks. JMLR, 2016.
[6] K. Saito, K.Watanabe, Y. Ushiku, et al.. Maximum classifier discrepancy for unsupervised domain adaptation. CVPR, 2018.
[7] 邓志东。AI与自动驾驶：人工智能有可能实现人类智能的挑战性任务吗？AI TIME，2022年09月16日。

[8] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi and F. Yu. ShapeNet: An Information-Rich 
3D Model Repository. ArXiv:1512.03012 [cs.GR], Stanford University --- Princeton University --- Toyota Technological Institute at Chicago, 2015.
[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CVPR, 2016.
[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.
[11] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, et al. MLP-Mixer: An all-MLP Architecture for Vision. NeurIPS, 2021.
[12] H. S. Behl, A. G. Baydin, R. Gal, P. H. S. Torr and V. Vineet. AutoSimulate: (Quickly) Learning Synthetic Data Generation. ECCV, 2020.
[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei. Imagenet: A large-scale hierarchical image database. CVPR, 2009.
[14] W. Liang and J. Zou. MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts. ICLR, 2022.
[15] S. Cicek and S. Soatto. Unsupervised domain adaptation via regularized conditional alignment. ICCV, 2019.
[16] H. Tang, K. Chen and K. Jia. Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering. CVPR, 2020.
[17] H. Tang, Y. Wang and K. Jia. Unsupervised domain adaptation via distilled discriminative clustering. Pattern Recognition, 2022.

32



33


