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What is this?

Background

Classification datasets are obtained
through a human labeling process.

Annotators labels can be noisy

Popular approaches for label
combination are majority vote or soft
labelling.

No published results on leveraging I1AA
statistics for label noise estimation.

Existing noise tolerant training
methods rely on unknown quantities.
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Contributions

* Methodology to estimate label
noise distribution using IAA
statistics.

* Leveraging the estimate to learn
from noisy datasets.

* Providing generalization bounds
based on IAA statistics.



Setting & Assumptions

Instance independent noise : P(y, |y, x) = P(y_aly) Noise Transition matrix :

a . _ " _ "
1)  All annotators have the same noise transition matrix T. (D)ij =Pya =jly =1

Proposition

T is positive definite

2) T is symmetric and with diagonal elements larger than 0.5
3)  Annotators are conditionally independent on the true label: P(y,, yply ) = P(y,|v)P(yply)
4)  Classes distribution is known v; = P(y =1i), D = diag(v)

The IAA matrix Mg, between annotators aand bis: (Myp,);j == Py, =1,yp = j)

My, can be writtenas aand bis: My, = T D T,,.



Estimation of the noise transition matrix

Lemma

1

1
If D2 commutes with T we have that: T = UA2UT where UAUT is an eigenvalue decomposition
1 1

of D 2MD 2

If the annotators have the same transition matrix, we can estimate M as follows:

n
z [YVak=ULYbk=J]
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* Obtain the eignevalue decomposition of Dz D"z = = UAUT. » T=UANUT

A more accurate estimate of T could be obtained as T = n(UAE UT) where 1 is a projection
operator to the set of doubly stochastic, positive definite and diagonally dominant matrices
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Estimation of the noise transition matrix

Let T be the noise transition matrix and T its estimate. With probability at least 1 — §:
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Experimental results

We performed experiments to validate the effectiveness of the method we propose for estimating T':
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Leveraging T for learning

We can calculate the posterior distributions as follows:

H

P(y; = c |y oY) <Py =c) P(y; = ¢ lyiir s Vi)
- . — h=1 - ~ ~ limp.; = 1,.— a.s.
= Dei = TCJ’h,i H_>OopC,l [yi=c]

We can use the posterior distributions as soft-labels : €(f (x;), Y14, -, Yu.i) = £(f (x:), Di)
_ T
Where ) pi = [pl’i, LR R } pc,i ] .

Or to weight the loss function : (f (x;), Y14, -, Vi) = Xoe1Pei £ (x), ec)
with e, c-th vector of the standard basis of RC.



Leveraging T for learning

We performed experiments to show how the estimated T can be leveraged to train
classifiers in the presence of noise labels.

CIFAR10-N dataset. In this dataset there are no
guarantees that the assumptions we made on T are
satisfied, however, the method is still applicable
with positive results.

Synthetic dataset with
features generated
uniformly in [0,1]?

Cross Entropy Loss |

1.00

0.95 1

0.90 Aggregation Method Pretrained Not-Pretrained
Poed random 0.718 £0.035 | 0.579 + 0.023
S 075, majority vote | 0.740 £0.017 | 0.590 = 0.006
® 0.70 average 0.762 +0.012 | 0.637 £0.016

posteriors (ours) 0.794 +0.005 | 0.652 +0.014
Table: Test Accuracy on CIFAR10-N with Resnet34
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Generalization Gap Bounds

We can leverage the estimation of T in the backward and forward losses.
Let £(t,y) be a generic loss.
2(t) == [£(t,eq), ..., L(t, ec)]
Ip (t,y) = (T7H L)y
lp (t,y) = f(TTt)y

We derived generalization gap bounds for he backward loss computed using T.

Let £, be the backward loss for £ .

) B Amin(D) |1 /4C
Ren (f) = mipRep () < (20 in(T)” + =2 (;)2) \/Eln(?) RF)g(C),

with 1g(c) = 6C%*VC +1




Conclusions

We provided:

* A methodology to estimate label noise distribution using inter annotator
agreement statistics

* A way to leverage estimated noise transition matrix to learn from noisy
datasets

e Generalization bounds for backward loss based on IAA statistics. This bounds
not dependent on true noise distribution (that is unkown), unlike previous
works.

Thanks!



