Open Vocabulary Semantic Segmentation
with Patch Aligned Contrastive Learning
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Patch Aligned Contrastive Learning (PACL)
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We label and predict on every pixel. This makes collecting annotations very expensive and limits the
number of concepts that we can learn.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S. and Schiele, B., 2016. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 3213-3223).




Open Vocabulary Prediction

Open vocabulary prediction in vision involves recognizing any arbitrary concept in an image. The concept
can be described in natural language.
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Like classification, can open-vocabulary semantic segmentation be performed using CLIP/CLIP like
models?
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LANGUAGE-DRIVEN SEMANTIC SEGMENTATION
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computes dense per-pixel embeddings of the input image. The image encoder is
trained with a contrastive objective to align pixel embeddings to the text embed-
ding of the corresponding semantic class. The text embeddings provide a flexible
label ion in which similar labels map to similar regions
in the embedding space (e.g., “cat” and “furry™). This allows LSeg to generalize
to previously unseen categories at test time, without retraining or even requiring
a single additional training sample. We demonstrate that our approach achieves
highly competitive zero-shot per pared to existing zero- and few-shot
semantic segmentation methods, and even matches the accuracy of traditional
segmentation algorithms when a fixed label set is provided. Code and demo are
available at hitps://github.com/isl-org/lang-seg.
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Li, B., Weinberger, K.Q., Belongie, S., Koltun, V. and Ranftl, R., 2022. Language-driven semantic segmentation. arXiv preprint arXiv:2201.03546.
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Abstract We design an open-vocabulary image segmentation model to HxWxD
organize an image into meaningful regions indicated by arbitrary texts.
Recent works (CLIP and ALIGN), despite attaining impressive open- T

vocabulary classification accuracy with image-level caption labels, are
unable to segment visual concepts with pixels. We argue that these mod-
els miss an important step of visual grouping, which organizes pixels into Word fs Cross-
groups before learning visual-semantic alignments. We propose OpenSeg Backbone attenﬁon
to address the above issue while still making use of scalable image-level encoder

supervision of captions. First, it learns to propose segmentation masks module
for possible organizations. Then it learns visual-semantic alignments by T

aligning each word in a caption to one or a few predicted masks. We T
find the mask representations are the key to support learning image A blg stuffed bear
segmentation from captions, making it possible to scale up the dataset RO
and vocabulary sizes. OpenSeg significantly outperforms the recent open- Slttlng ona benCh
vocabulary method of LSeg by +19.9 mIoU on PASCAL dataset, thanks outside a store
to its scalability.

Class-agnostic
segmentation
annotations

Ghiasi, G., Gu, X., Cui, Y. and Lin, T.Y., 2021. Open-vocabulary image segmentation. arXiv preprint arXiv:2112.12143.
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Thomas Breuel

Abstract

Grouping and recognition are important components of
visual scene understanding, e.g., for object detection and
semantic segmentation. With end-to-end deep learning
systems, grouping of image regions usually happens im-
plicitly via top-down supervision from pixel-level recogni-
tion labels. Instead, in this paper, we propose to bring
back the grouping mechanism into deep networks, which
allo semantic segments to emerge automatically with
only text supervision. We propose a hierarchical Group-
ing Vision Transformer (GroupViT), which goes beyond
the regular grid structure representation and learns to

group image regions into progressively larger arbitrary-
shaped segments. We train GroupViT jointly with a text en-
coder on a large-scale image-text dataset via contrastive
lo: With only text supervision and without any
level annotations, GroupViT learns to group together se-
mantic regions and successfully transfers to the task of se-
mantic segmentation in a zero-shot manner, i.e., without
any further fine-tuning. It achieves a zero-shot accuracy
of 52.3% mloU on the PASCAL VOC 2012 and 22.4%
mloU on PASCAL Context datasets, and performs compet-
itively to state-of-the-art transfer-learning methods requir-

ing greater levels of supervision. We open-source our code
at hitps:/fgithub.com/NVabs/GroupViT.

1v:2202.11094v5 [cs.CV] 18 Jul 2022

GroupViT: Semantic Segmentation Emerges from Text Supervision
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Figure 1. Problem Overview. First, we jointly train GroupViT
and a text encoder using paired image-text data. With GroupViT,
meaningful semantic grouping automatically emerges without any
mask annotations. Then, we transfer the trained GroupViT model
to the task of zero-shot semantic segmentation.
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Xu, J., De Mello, S., Liu, S., Byeon, W., Breuel, T., Kautz, J. and Wang, X., 2022. Groupvit: Semantic segmentation emerges from text supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 18134-18144).



What if we use the patch vision tokens?
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Patch-token level alignment in CLIP

Alignment of different images of cats with the word “cat”. We see similar
results even when providing prompt engineered versions of the word “cat”.

Patch Classification Accuracy
CLIP Vision Encoder  Pre-Alignment  Post-Alignment

ViT-B-16 52.49 96.51
ViT-L/14 27.91 95.33

Using the alignment value to classify
patches leads to extremely poor
classification accuracy.

In short, we see no patch/token level alignment between the image and text encoders in a pre-trained CLIP.



Patch-token level alignment in CLIP

Is there any semantically useful information in the vision patch tokens then?



Semantic Coherence

Semantic Coherence: The property which leads to semantically similar regions in the image having similar

patch/token level representations.

Image and Query Points

Self Correspondence

KNN Correspondence

Figure 2: Feature correspondences from DINO. Correspon-
dences between the source image (left) and the target images
(middle and right) are plotted over the target images in the
respective color of the source point (crosses in the left im-
age). Feature correspondences can highlight key aspects of
shared semantics within a single image (middle) and across
similar images such as KNNs (right)
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Figure 3: Precision recall curves show

that feature self-correspondences
strongly predict true label co-
occurrence. DINO outperforms

MoCoV2 and a CRF kernel, which
shows its power as an unsupervised
learning signal.

Semantic coherence has been shown to exist in
pre-trained self-supervised vision transformers
like DINO. Particularly, feature
correspondences can be used as a binary
classifier to predict class-cooccurrence.

In fact, this feature has been utilized before to
train models for unsupervised semantic
segmentation.

Hamilton, M., Zhang, Z., Hariharan, B., Snavely, N. and Freeman, W.T., 2022. Unsupervised semantic segmentation by distilling feature correspondences. arXiv preprint arXiv:2203.08414.



Semantic Coherence in CLIP

Semantic Coherence: The property which leads to semantically similar regions in the image having similar

patch/token level representations.

q Y 1. Not only do we find semantic

." ‘ ] coherence to exist, we find the
(©) (d)

coherence to be stronger than DINO in

0.2 ,r" —— DINO ViT-B/16 (AUC=0.6)

= terms  of  predicting  class-
= = & % . 00 02 0 QFPRU.G 08 1.0 Cooccurrence.
Figure 4. Qualltatl.ve results on semantic coh.el"encg between _ 2. Surprisingly, VIT-B/16 shows better
CLIP and I?INO ViT-B/16. a): we show the original image of a Fl(gil:lret.& ROC tc.urve coherence than ViT-L/14 in CLIP.
. 1ndi 1 mantl - .. .

dog class with th.e Patch marker (y‘ellov.v X near the centre). b, ¢): herec:ce (g) fseC Em cacI:)d 3. This indicates that we may be able to
we show CLIP vision encode}r cosine similarity across all patches -0 " L train an alignment between image
for the same and a different image of a dog. d, e): we show the  cLip encoders outper- and text patches.
same for DINO. See more examples in Appendix B.1. form DINO. 4. This however has to be done in a

weakly supervised fashion!



Patch Aligned Contrastive Learning (PACL)

Patch level alignment
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Alignment in CLIP vs CLIP + PACL

Figure 2. Patch level alignment between the word “cat” and
images of cats. In the first row, we show the original images, in
the second row, we show the patch level alignment in CLIP ViT-
B/16 and in the third row, we show the alignment for our method.

Patch Classification Accuracy

CLIP Vision Encoder  Pre-Alignment  Post-Alignment
ViT-B-16 52.49 96.51
ViT-L/14 27.91 95.33




Zeroshot Segmentation and Classification
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Use the patch level alignment for
segmentation.

Use the image level compatibility function
for classification.



Open Vocabulary Segmentation using PACL with CLIP
Backbone

External Constraints mloU
Method Encoder Training Set Annotation Mask | PV-20[10]  PC-59 (0]  CS-17111]  A-150(07)
SPNet [55] ResNet-101 X 4 X 15.6 4.0 8.7
ZS3Net [ 1] ResNet-101 X v X 17.7 7.7 9.6
LSeg 28] ViT-L/16 X v X 52.3 - - -
OpenSeg [17] EfficientNet-B7 COCO [9] + Loe. Narr. [10) x v 72.2 48.2 2 28.6
ViL-Seg [12] ViT-B/16 GCCI2M [0] X X 34.4 16.3 16.4 -
GroupViT [56] ViT-S/16 GCCI2M [6] + YFCCISM [41,4 X X 52.3 22.4 24.3
CLIP [+1] ViT-B/16 WIT-400M [41] | X X | 8.4 2.3 2.6 1.3
CLIP + PACL (Ours) ViT-B/16 GCC3M [44] + GCCI2M [6] + YFCCISM [41,46] | X X | 72.3 50.1 38.8 31.4

Table 2. Results on zero-shot semantic segmentation on Pascal VOC (PV-20), Pascal Context (PC-59) and COCO Stuff (CS-171) and
ADE20K (A-150) datasets. We provide the encoder architecture, external training dataset (if any) as well as if those methods use segmen-
tation annotations or class-agnostic segmentatlon masks. Our method (CLIP + PACL) consistently outperforms all previous approaches.

Stride Trick: At inference time,
reduce  the stride of the
convolutional  layer  generating
patches in  the transformer.

Figure 6. Qualitative results on zero-shot semantic segmenta- Th is I ea dS to a muc h / arger num be r
tion. The first row denotes the original images, the second row

shows the corresponding labels, the third row shows results ob- Of p atCheS an d can be used to
tained from a vanilla CLIP ViT-B/16, and the fourth row shows prOVide fine_grained segmen tation
results of our method, PACL trained on a CLIP ViT-B/16 encoder. L.

The first 3 images from the left are from Pascal VOC and the next pr edictions.

3 images are from ADE20K.



Ablations across Datasets and Encoders

Dataset Vision Encoder  Text Encoder = mloU PV-20
CLIP B/16 B/16 64.1
GCCI2M CLIPL/14 L/14 62.7
DINO B/16 B/16 55.4
CLIP B/16 B/16 69.2
GCCI2M + YFCCI5M CLIPL/14 L/14 68.4
DINO B/16 B/16 62.6
CLIP B/16 B/16 72.3
GCC3M + GCC12M + YFCC15M CLIPL/14 L/14 LT
DINO B/16 B/16 64.8

Table 3. Ablation on zero-shot segmentation across encoder
architectures and datasets on Pascal VOC (PV-20). In the Text
Encoder column, B/16(L/14) indicates the pre-trained text encoder
trained for CLIP ViT-B/16(L/14).

1. The order of performance seems to
follow the same trend as semantic
coherence.

2. A patch level alignment can even be

trained between DINO and a CLIP text
encoder.

3. Thus PACL is independent of encoders

and can be trained using different
encoder combinations.



Zero-shot Image Classification
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Figure 8. Zero-shot image classification performance of PACL
+ CLIP vs vanilla CLIP on 12 datasets. PACL + CLIP is com-
petitive with or outperforms CLIP on most datasets.
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