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Egocentric Action Recognition:
Ubiquitous in Daily Life 

An egocentric view example of “using phone”.
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Multi-Modal Generalization (MMG)
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MMG investigates system generalizability 
under limited or absent data modalities.

• missing modality generalization: During 
inference, some modalities present at training are 
absent.

• cross-modal zero-shot generalization: 
Training and inference modalities are disjoint.

Settings: Few-shot & Many-shot



Intriguing, isn't it? 
But what are its practical applications?
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Motivation
Missing Modality Evaluation

User Case 1: Users only allow partial device access (camera, microphone, etc.).
Solution: Deploy a multimodal model robust to different input modalities.

1. Why partial access? Reasons include user privacy and location-specific restrictions (e.g., 
libraries, where audio isn't available).

2. Why using a single model to deal with different input modalities? Storage efficiency.
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Motivation
Cross-Modal Zero-Shot Evaluation

User case 2: Customizing user devices to learn specific visual actions.
Solution: Implement an efficient few-shot learner, capable of learning novel visual 
representations from inexpensive, locally sourced modalities.

1. Why learn locally? To respect user privacy.
2. Why use cheap data (audio, IMU) to train? Training with video data is very expensive.
3. Why few-shot examples? It’s impractical to ask users collect more data.
4. Why use video data for inference? Video data is highly informative, thus promoting 

accurate predictions.
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MMG-Ego4D Dataset

The MMG-Ego4D dataset includes data points across three modalities—video, audio, and inertial 
motion (IMU)—derived from the Ego4D dataset.
• Task: MMG egocentric action recognition under both many-shot and few-shot settings.
• Data : 167-hour unlabeled and 35-hour of labeled temporal-aligned Video-Audio-IMU data.
• Label: Consisting of 79 classes in total, with 65 base classes and 14 novel classes designated 

for few-shot tasks. Each sample has a single label.
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A Streamlined Multimodal Transformer Architecture
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The prototypical loss aims to minimize the distance be-
tween the centroid of support embeddings and the query
embeddings in the feature space, where the labels for query
data points are assigned according to their distance to ev-
ery support centroid. In our proposed approach, support
and query examples can belong to different modalities, al-
lowing for cross-modal alignment (see Fig. 3). We use zk

m

to denote a unified space support feature of class k and ẑn

to represent a unified space query feature, where they might
belong to different modalities m,n 2 {audio, video, IMU}.
The centroid unified space support feature ckm is calculated
by averaging:

ckm =
1

|Zk
m|

X

zk
m2Zk

m

zk
m, (4)

where Zk
m is the set of support features of class k with

modality m.
The predicted probability of a query example ẑn belong-

ing to class k is computed using the negative exponential of
the `2 distance d between the query feature and the centroid
of the unified space support feature for class k:

Pk =
exp

�
�d

�
ẑn, ckm

��
P

k0 exp (�d (ẑn, ck
0

m))
,m, n 2 {audio, video, IMU}

(5)
Our proposed cross-modal prototypical loss Lproto is then

formulated as the negative log-likelihood loss between the
predicted probability and the ground truth class for the
query example ŷ:

Lproto = NLL (log [P0, P1, ...PN�1] , ŷ) . (6)

In summary, our cross-modal prototypical loss extends
the prototypical loss by enabling the cross-modal alignment
between support and query features in the unified feature
space. This loss can improve the generalization ability of
representations in the zero-shot cross-modal task under the
few-shot setting.

5. Experimental Setup

5.1. Architecture Details

Unimodal backbones. We use MViT-B (16 ⇥ 4) [15]
as the feature extractor for video modality, which is pre-
trained on Kinetics-400 [37]. Audio Spectrogram Trans-
former (AST) [26] is used as the audio feature extractor,
and it is pre-trained on AudioSet [22]. For IMU feature ex-
tractor, we designed a ViT [11] based transformer network.
Fusion module. Our fusion module is a transformer net-
work with two layers. Each layer contains a self-attention
block with 12 heads. The embedding dimension is 768.

5.2. Training & Evaluation Details

We illustrate some basic details of the model training and
evaluation. Hyper-parameters like learning rate and batch
size are detailed in our supplementary material.

Figure 3. Cross-modal prototypical loss. Few-shot prototypes
centroid Ck computed by averaging support examples’ feature. In
contrast to the vanilla prototypical loss, our approach allows sup-
port and query examples to belong to different modalities. The
figure shows an example where the support examples are video
data, and the query example is audio data.

Model FLOPs (G) Param (M) Modality
5 Way 5 Shot

Accuracy

Top-1

Accuracy

MViT-B [15] 70.50 36.50 video 58.89 52.40
AST [26] 42.08 87.03 audio 31.06 39.48

IMU Transformer 1.65 15.55 IMU 40.07 29.78

Table 3. Unimodal few-shot & supervised evaluation results.
Networks are trained on each modality independently. Video
achieves the best performance, while also consuming more com-
putational resources.

Supervised setting. Our model uses MMG-Ego4D base
classes for multimodal supervised training. Under the zero-
shot cross-modal setting, our model also utilizes MMG-

Ego4D unlabeled data to do the multimodal unsupervised
pre-training. We use Top-1 Accuracy to measure model per-
formance.
Few-Shot setting. We use the finetune-based method to
perform few-shot evaluation, where a small neural network
is trained on the support set and is used to classify data
points in the query set [30,36,42]. We adopt the standard N-
way K-shot setting [20, 69] as the evaluation setting. Top-1
Accuracy is used to measure model performance. The fi-
nal number is obtained by averaging the results on 10 000
episodes.

6. Results on MMG-Ego4D Benchmark

6.1. MMG-Ego4D Few-Shot Setting Results

Multimodal system outperforms unimodal system sig-

nificantly. Tab. 3 presents the few-shot classification re-
sults for individual modalities. Notably, the video modal-
ity achieves the highest accuracy, which is anticipated since
most classes can be easily recognized using visual informa-
tion. However, as illustrated in Fig 2, fusing information
from different modalities is critical to achieving better per-



Setting Task

Multimodal

unsupervised

pre-train

Unimodal

supervised

pre-train

Multimodal

supervised

train

Multimodal

meta-train

Regular - LCE LCE + Lalign -
Missing Modal - LCE LCE + Lalign -

Zero-Shot Lalign - LCE -

Few-shot
Regular - LCE LCE + Lalign Lproto

Missing Modal - LCE LCE + Lalign Lproto
Zero-Shot - LCE LCE + Lalign Lproto

Table 2. Training pipelines of supervised & few-shot settings.
LCE denotes the cross-entropy loss. Lalign and Lproto are cross-
modal contrastive alignment loss and cross-modal prototypical
loss, which will be explained in Sec. 4.3 and 4.4.

trained using a cross-entropy loss, without the contrastive
alignment loss term used in previous settings, as the evalua-
tion modality is absent in the labeled data, due to the restric-
tion of this setting. It is meaningless to construct an align-
ment between the training modalities. Therefore we choose
to build such an alignment using the modality-complete un-
labeled data, which also does not violate the rule of this
setting. It should be noted that the modality restriction in
the MMG-Ego4D tasks applies to the labeled training data
used in the multimodal supervised pre-training stage and
the evaluation stage. This is different from the few-shot set-
ting. We have summarized the training pipeline in Tab. 2.

4.2. Multimodal Network with a Transformer-

based Fusion Module

Our proposed multimodal network consists of two main
components: unimodal backbones and a Transformer-based
fusion module. The unimodal backbones consist of three
separate feature extractors, which extract features from dif-
ferent input modalities. The fusion module aims to fuse
and aggregate the features of different modalities from uni-
modal backbones and output the fused feature. There are
two widely-used options for fusing modalities: using an
MLP to process the concatenated representations of dif-
ferent modalities [51, 54, 57], or utilizing a Transformer-
based fusion module to take a series of tokens from differ-
ent modalities [46,49,60]. We adopt the Transformer-based
fusion design as it can easily scale to an arbitrary number
of input tokens using attention modules. This is especially
important as the multimodal model is expected to handle
data with a varying number of modalities in the context of
our proposed task. The final output of the fusion module
is obtained by averaging the output tokens instead of using
the CLS token [11, 46]. Formally, the output of the fusion
module zfuse can be written as follows:

zfuse = f
�⇥
xm

output + em; |m 2 {audio, video, IMU}
⇤�

,
(1)

where xm
output represents the output representation of the fea-

ture extractor for modality m. f is the fusion module that
takes a sequence of input tokens from different modalities.

Tokens from each modality are augmented with a modality-
specific learnable embedding em, which is used to disam-
biguate input tokens’ modality information.

During the training of the fusion module, we applied a
technique named modality drop. A subset of modalities is
randomly dropped out with a probability p during training,
to ensure the robustness of the fusion module to a varying
number of input modalities.

4.3. Cross-Modal Alignment Multimodal Training

In the zero-shot cross-modal setting, the multimodal
model is required to learn and infer from disjoint modali-
ties. One approach to achieving this is to construct a uni-
fied feature space that captures representations from differ-
ent modalities. The feature space should ensure that fea-
tures from the same data point but different modalities are
in close proximity to each other. This allows knowledge
learned from one modality to be applied to inference in
other modalities. To achieve this, we propose to align fea-
tures from the same data point but different modalities in
multimodal training with contrastive loss. Specifically, the
unimodal feature output by the fusion module is represented
as follows:

zm = f
�
xm

output + em
�
, m 2 {audio, video, IMU},

(2)
which is expected to lie in the unified feature space. We
impose Noise Contrastive Estimation (NCE) [58] loss to
align video-audio and video-IMU pairs, drawn from differ-
ent time stamps of video-audio-IMU data. Positive pairs
consist of different modalities pairs from the same temporal
location, while negative pairs are from different temporal
locations. Our NCE alignment loss LNCE is written as fol-
lows:

Lalign (zvideo, zm) =
X

m2{audio, IMU}

� log

 
exp

�
z>

videozm/⌧
�

exp
�
z>

videozm/⌧
�
+
P

z02N exp
�
z>

videoz
0
m/⌧

�
!
,

(3)

where N are negative pairs in a batch. We use cosine sim-
ilarity as the feature distance measurement metric in our
NCS loss. ⌧ is a temperature parameter controlling the
softness. Unlike previous methods that build a hierarchical
common space [1], our approach defines a unified feature
space for all modalities.

4.4. Cross-Modal Prototypical Loss

What properties can help representations better gener-

alize in the few-shot task? We design a novel extension of
prototypical loss [61] that takes into account the alignment
between features of different modalities.

Many-shot

9

Overview of Training Pipeline
For Many-shot scenarios:
• Regular/Missing-Modal: (1) Unimodal supervised pre-training, (2) Multimodal supervised training
• Cross-Modal Zero-Shot: (1) Multimodal unsupervised pre-training, (2) Multimodal supervised training

For Few-shot scenarios :
• All tasks: (1) Unimodal supervised pre-training, (2) Multimodal supervised training, (3) Multimodal meta-

training



Unified Feature Space

Multimodal Alignment Contrastive Loss
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+

Positive pairs:  pairs of different modalities from the same 
temporal location.
Negative pairs: pairs from different temporal locations.
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Cross-modal Prototypical Loss

!!

!"

!#

Support feature from video modality.

Query feature from audio modality.

class 1 class 2

class 3

Women chatting.

A video clip showing a woman is 
conversing with someone.

A man is harvesting fruits 
from a tree.

A man is hanging clothes 
on hangers.

We meta-train the multimodal system using 
cross-modal prototypical loss.

Core idea: Calculate the distance between 
support and query embeddings of different 
modalities.
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Results from Multimodal Few-Shot Evaluation

Key Takeaways:
1. Our model exhibits robustness when some modalities are absent during evaluation.
2. Training with affordable data and evaluating with expensive but informative data yields superior results 

compared to training and evaluation using only affordable data.
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Eval.

Setting

Support Modalities Query Modalities 5 Way 5 Shot

AccuracyVideo Audio IMU Video Audio IMU

Regular X X X X X X 63.00

M
is

si
ng

M
od

al
ity

X X X X X 61.76
X X X X X 50.77
X X X X X 62.79
X X X X 62.68
X X X X 43.65
X X X X 47.48

Ze
ro

-S
ho

t
Ev

al
ua

tio
n

X X 46.90
X X 42.07

X X X 50.80
X X 44.01
X X 46.56
X X X 49.37

Table 4. Multimodal few-shot evaluation results. These results
are obtained with a single network that works across all three eval-
uation settings. We show the regular evaluation results in the first
block, where the model is trained and evaluated with all the modal-
ities. The second block presents missing-modality results, where
the model is trained on all modalities but evaluated only on a sub-
set. The last block is the result of cross-modal zero-shot evalu-
ation, where the training and evaluation modalities are disjoint.
Note that all results are obtained using the same model weight.
Our supplementary material provides results with more training
and test modalities configurations.

formance in egocentric action detection. Our proposed mul-
timodal system outperforms the best-performing unimodal
system by 4.11 in terms of accuracy (Tab. 4 block 1).
Missing modality generalization. We present the results
of the missing modality evaluation in the second block of
Tab. 4, where the query modality is a subset of the sup-
port modality. Our model exhibits good generalizability
even when some modalities are missing during evaluation,
achieving solid accuracy. Notably, including the video
modality in the query set yields a slight change in per-
formance compared to the multimodal case. When video
modality is not included, there is a 19.41% drop in accu-
racy, indicating that video modality is the most informative.
Surprisingly, when queries have only one cheap modality
(audio or IMU), our method outperforms unimodal results
(Tab. 3) by a large margin of 19.24% on IMU and 40.53%
on audio modality, demonstrating the effectiveness of our
approach.
Zero-shot cross-modal generalization. This task presents
a more significant challenge than missing modality gener-
alization as the support and query modalities are disjoint.
We select a few combinations and present the results in
the last block of Tab. 4. To enable efficient training, we
choose a setting where the support modality is computation-
ally cheap, such as IMU and Audio, while the query modal-
ity is relatively more informative, such as video, to achieve
high performance. Our model significantly outperforms the
audio and IMU unimodal settings using this evaluation set-

Eval.

Setting

Train Modalities Test Modalities Top-1

AccuracyVideo Audio IMU Video Audio IMU

Regular X X X X X X 55.66

M
is

si
ng

M
od

al
ity X X X X X 55.47

X X X X X 37.07
X X X X X 54.57

Ze
ro

-S
ho

t
Ev

al
ua

tio
n

X X 30.98
X X 20.00

X X X 25.03
X X 43.43
X X 35.67
X X X 41.02

Table 5. Supervised setting evaluation results. Results are orga-
nized following the same structure as in Tab. 4. The model has the
same weight in regular and missing modality evaluation.

ting. We also present the results of using video as the sup-
port modality and IMU and/or audio as the query modality,
where our model still obtains decent accuracy. While we
did not include all support-query modality combinations in
the paper due to space limitations, readers can refer to our
supplementary materials for additional results.

6.2. MMG-Ego4D Supervised Setting Results

The results of the supervised settings are presented in
Tab. 5. Our multimodal model outperforms each unimodal
model in Tab. 3 significantly in the regular setting. Re-
garding the missing modality evaluation, our method ex-
hibits strong generalization ability in the presence of miss-
ing modalities. If the video modality is preserved in the
evaluation modality, the performance only experiences a
minor drop. However, when video data is missing during
evaluation, the performance drops by around 33%, suggest-
ing that the video modality is more informative than the
other two modalities. The last block of Tab. 5 shows the
zero-shot cross-modal results. We explore two cases: using
expensive modalities for training and cheap modalities for
inference, and using cheap modalities for training and ex-
pensive modalities for inference. We observe that the model
performs better in the latter case, indicating that learning
from informative modalities benefits the model more.

6.3. Insights from Ablation Study

In this section, we carefully ablate the effect of each
component in our designed multimodal system under var-
ious evaluation settings, including the regular, missing
modality, and cross-modal zero-shot evaluations.
Fusion module. In this study, we propose the use of
a Transformer-based fusion module as an alternative ap-
proach to integrating information from different modalities
in a multimodal network. To evaluate its performance, we
conduct a comparative analysis against an MLP-based fu-
sion module that concatenates representations from diverse

The prototypical loss aims to minimize the distance be-
tween the centroid of support embeddings and the query
embeddings in the feature space, where the labels for query
data points are assigned according to their distance to ev-
ery support centroid. In our proposed approach, support
and query examples can belong to different modalities, al-
lowing for cross-modal alignment (see Fig. 3). We use zk

m

to denote a unified space support feature of class k and ẑn

to represent a unified space query feature, where they might
belong to different modalities m,n 2 {audio, video, IMU}.
The centroid unified space support feature ckm is calculated
by averaging:

ckm =
1

|Zk
m|

X

zk
m2Zk

m

zk
m, (4)

where Zk
m is the set of support features of class k with

modality m.
The predicted probability of a query example ẑn belong-

ing to class k is computed using the negative exponential of
the `2 distance d between the query feature and the centroid
of the unified space support feature for class k:

Pk =
exp

�
�d

�
ẑn, ckm

��
P

k0 exp (�d (ẑn, ck
0

m))
,m, n 2 {audio, video, IMU}

(5)
Our proposed cross-modal prototypical loss Lproto is then

formulated as the negative log-likelihood loss between the
predicted probability and the ground truth class for the
query example ŷ:

Lproto = NLL (log [P0, P1, ...PN�1] , ŷ) . (6)

In summary, our cross-modal prototypical loss extends
the prototypical loss by enabling the cross-modal alignment
between support and query features in the unified feature
space. This loss can improve the generalization ability of
representations in the zero-shot cross-modal task under the
few-shot setting.

5. Experimental Setup

5.1. Architecture Details

Unimodal backbones. We use MViT-B (16 ⇥ 4) [15]
as the feature extractor for video modality, which is pre-
trained on Kinetics-400 [37]. Audio Spectrogram Trans-
former (AST) [26] is used as the audio feature extractor,
and it is pre-trained on AudioSet [22]. For IMU feature ex-
tractor, we designed a ViT [11] based transformer network.
Fusion module. Our fusion module is a transformer net-
work with two layers. Each layer contains a self-attention
block with 12 heads. The embedding dimension is 768.

5.2. Training & Evaluation Details

We illustrate some basic details of the model training and
evaluation. Hyper-parameters like learning rate and batch
size are detailed in our supplementary material.

Figure 3. Cross-modal prototypical loss. Few-shot prototypes
centroid Ck computed by averaging support examples’ feature. In
contrast to the vanilla prototypical loss, our approach allows sup-
port and query examples to belong to different modalities. The
figure shows an example where the support examples are video
data, and the query example is audio data.

Model FLOPs (G) Param (M) Modality
5 Way 5 Shot

Accuracy

Top-1

Accuracy

MViT-B [15] 70.50 36.50 video 58.89 52.40
AST [26] 42.08 87.03 audio 31.06 39.48

IMU Transformer 1.65 15.55 IMU 40.07 29.78

Table 3. Unimodal few-shot & supervised evaluation results.
Networks are trained on each modality independently. Video
achieves the best performance, while also consuming more com-
putational resources.

Supervised setting. Our model uses MMG-Ego4D base
classes for multimodal supervised training. Under the zero-
shot cross-modal setting, our model also utilizes MMG-

Ego4D unlabeled data to do the multimodal unsupervised
pre-training. We use Top-1 Accuracy to measure model per-
formance.
Few-Shot setting. We use the finetune-based method to
perform few-shot evaluation, where a small neural network
is trained on the support set and is used to classify data
points in the query set [30,36,42]. We adopt the standard N-
way K-shot setting [20, 69] as the evaluation setting. Top-1
Accuracy is used to measure model performance. The fi-
nal number is obtained by averaging the results on 10 000
episodes.

6. Results on MMG-Ego4D Benchmark

6.1. MMG-Ego4D Few-Shot Setting Results

Multimodal system outperforms unimodal system sig-

nificantly. Tab. 3 presents the few-shot classification re-
sults for individual modalities. Notably, the video modal-
ity achieves the highest accuracy, which is anticipated since
most classes can be easily recognized using visual informa-
tion. However, as illustrated in Fig 2, fusing information
from different modalities is critical to achieving better per-

Unimodal Results

Multimodal Results



Eval.

Setting

Support Modalities Query Modalities 5 Way 5 Shot

AccuracyVideo Audio IMU Video Audio IMU

Regular X X X X X X 63.00

M
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ng
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X X X X X 61.76
X X X X X 50.77
X X X X X 62.79
X X X X 62.68
X X X X 43.65
X X X X 47.48

Ze
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X X 46.90
X X 42.07

X X X 50.80
X X 44.01
X X 46.56
X X X 49.37

Table 4. Multimodal few-shot evaluation results. These results
are obtained with a single network that works across all three eval-
uation settings. We show the regular evaluation results in the first
block, where the model is trained and evaluated with all the modal-
ities. The second block presents missing-modality results, where
the model is trained on all modalities but evaluated only on a sub-
set. The last block is the result of cross-modal zero-shot evalu-
ation, where the training and evaluation modalities are disjoint.
Note that all results are obtained using the same model weight.
Our supplementary material provides results with more training
and test modalities configurations.

formance in egocentric action detection. Our proposed mul-
timodal system outperforms the best-performing unimodal
system by 4.11 in terms of accuracy (Tab. 4 block 1).
Missing modality generalization. We present the results
of the missing modality evaluation in the second block of
Tab. 4, where the query modality is a subset of the sup-
port modality. Our model exhibits good generalizability
even when some modalities are missing during evaluation,
achieving solid accuracy. Notably, including the video
modality in the query set yields a slight change in per-
formance compared to the multimodal case. When video
modality is not included, there is a 19.41% drop in accu-
racy, indicating that video modality is the most informative.
Surprisingly, when queries have only one cheap modality
(audio or IMU), our method outperforms unimodal results
(Tab. 3) by a large margin of 19.24% on IMU and 40.53%
on audio modality, demonstrating the effectiveness of our
approach.
Zero-shot cross-modal generalization. This task presents
a more significant challenge than missing modality gener-
alization as the support and query modalities are disjoint.
We select a few combinations and present the results in
the last block of Tab. 4. To enable efficient training, we
choose a setting where the support modality is computation-
ally cheap, such as IMU and Audio, while the query modal-
ity is relatively more informative, such as video, to achieve
high performance. Our model significantly outperforms the
audio and IMU unimodal settings using this evaluation set-

Eval.

Setting

Train Modalities Test Modalities Top-1

AccuracyVideo Audio IMU Video Audio IMU

Regular X X X X X X 55.66

M
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ity X X X X X 55.47

X X X X X 37.07
X X X X X 54.57
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X X 30.98
X X 20.00

X X X 25.03
X X 43.43
X X 35.67
X X X 41.02

Table 5. Supervised setting evaluation results. Results are orga-
nized following the same structure as in Tab. 4. The model has the
same weight in regular and missing modality evaluation.

ting. We also present the results of using video as the sup-
port modality and IMU and/or audio as the query modality,
where our model still obtains decent accuracy. While we
did not include all support-query modality combinations in
the paper due to space limitations, readers can refer to our
supplementary materials for additional results.

6.2. MMG-Ego4D Supervised Setting Results

The results of the supervised settings are presented in
Tab. 5. Our multimodal model outperforms each unimodal
model in Tab. 3 significantly in the regular setting. Re-
garding the missing modality evaluation, our method ex-
hibits strong generalization ability in the presence of miss-
ing modalities. If the video modality is preserved in the
evaluation modality, the performance only experiences a
minor drop. However, when video data is missing during
evaluation, the performance drops by around 33%, suggest-
ing that the video modality is more informative than the
other two modalities. The last block of Tab. 5 shows the
zero-shot cross-modal results. We explore two cases: using
expensive modalities for training and cheap modalities for
inference, and using cheap modalities for training and ex-
pensive modalities for inference. We observe that the model
performs better in the latter case, indicating that learning
from informative modalities benefits the model more.

6.3. Insights from Ablation Study

In this section, we carefully ablate the effect of each
component in our designed multimodal system under var-
ious evaluation settings, including the regular, missing
modality, and cross-modal zero-shot evaluations.
Fusion module. In this study, we propose the use of
a Transformer-based fusion module as an alternative ap-
proach to integrating information from different modalities
in a multimodal network. To evaluate its performance, we
conduct a comparative analysis against an MLP-based fu-
sion module that concatenates representations from diverse

The prototypical loss aims to minimize the distance be-
tween the centroid of support embeddings and the query
embeddings in the feature space, where the labels for query
data points are assigned according to their distance to ev-
ery support centroid. In our proposed approach, support
and query examples can belong to different modalities, al-
lowing for cross-modal alignment (see Fig. 3). We use zk

m

to denote a unified space support feature of class k and ẑn

to represent a unified space query feature, where they might
belong to different modalities m,n 2 {audio, video, IMU}.
The centroid unified space support feature ckm is calculated
by averaging:

ckm =
1

|Zk
m|

X

zk
m2Zk

m

zk
m, (4)

where Zk
m is the set of support features of class k with

modality m.
The predicted probability of a query example ẑn belong-

ing to class k is computed using the negative exponential of
the `2 distance d between the query feature and the centroid
of the unified space support feature for class k:

Pk =
exp

�
�d

�
ẑn, ckm

��
P

k0 exp (�d (ẑn, ck
0

m))
,m, n 2 {audio, video, IMU}

(5)
Our proposed cross-modal prototypical loss Lproto is then

formulated as the negative log-likelihood loss between the
predicted probability and the ground truth class for the
query example ŷ:

Lproto = NLL (log [P0, P1, ...PN�1] , ŷ) . (6)

In summary, our cross-modal prototypical loss extends
the prototypical loss by enabling the cross-modal alignment
between support and query features in the unified feature
space. This loss can improve the generalization ability of
representations in the zero-shot cross-modal task under the
few-shot setting.

5. Experimental Setup

5.1. Architecture Details

Unimodal backbones. We use MViT-B (16 ⇥ 4) [15]
as the feature extractor for video modality, which is pre-
trained on Kinetics-400 [37]. Audio Spectrogram Trans-
former (AST) [26] is used as the audio feature extractor,
and it is pre-trained on AudioSet [22]. For IMU feature ex-
tractor, we designed a ViT [11] based transformer network.
Fusion module. Our fusion module is a transformer net-
work with two layers. Each layer contains a self-attention
block with 12 heads. The embedding dimension is 768.

5.2. Training & Evaluation Details

We illustrate some basic details of the model training and
evaluation. Hyper-parameters like learning rate and batch
size are detailed in our supplementary material.

Figure 3. Cross-modal prototypical loss. Few-shot prototypes
centroid Ck computed by averaging support examples’ feature. In
contrast to the vanilla prototypical loss, our approach allows sup-
port and query examples to belong to different modalities. The
figure shows an example where the support examples are video
data, and the query example is audio data.
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5 Way 5 Shot

Accuracy

Top-1

Accuracy

MViT-B [15] 70.50 36.50 video 58.89 52.40
AST [26] 42.08 87.03 audio 31.06 39.48

IMU Transformer 1.65 15.55 IMU 40.07 29.78

Table 3. Unimodal few-shot & supervised evaluation results.
Networks are trained on each modality independently. Video
achieves the best performance, while also consuming more com-
putational resources.

Supervised setting. Our model uses MMG-Ego4D base
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shot cross-modal setting, our model also utilizes MMG-

Ego4D unlabeled data to do the multimodal unsupervised
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Accuracy is used to measure model performance. The fi-
nal number is obtained by averaging the results on 10 000
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Results from Multimodal Many-Shot Evaluation

Key Takeaways:
1. Our model demonstrates robustness in scenarios where some modalities are absent during evaluation.
2. Substantial room for improvement exists in the domain of cross-modal zero-shot evaluation.

13

Unimodal Results

Multimodal Results



Ablation Study

14

Eval.

Setting

Train/Support Modal. Test/Query Modal. Fusion

Module

Contrastive

Alignment

Top-1

Accuracy

Cross-Modal

Proto. Loss

5 Way 5 Shot

AccuracyVideo Audio IMU Video Audio IMU

Regular X X X X X X
Attention X 55.66 X 63.00

Attention ⇥ 52.18 X 61.16
MLP X 52.79 X 58.67

Attention X - ⇥ 62.37

Missing
Modality X X X X X

Attention X 37.07 X 50.77

Attention ⇥ 21.32 X 40.87
MLP X 32.89 X 49.00

Attention X - ⇥ 50.03

Zero-shot
Cross-Modal X X X

Attention X 25.03
⇤ X 51.40

Attention ⇥ 2.37 X 33.93
MLP X 24.54⇤ X 51.08

Attention X - ⇥ 50.80

modalities and processes them using an MLP. To ensure a
fair comparison, we maintain the dimensionality of input
and output representations of both modules to be consis-
tent, with a similar number of parameters. In situations
where some modalities are not present in the input of the
MLP-based fusion module, we replace their representations
with zero vectors. The results of the ablation study pre-
sented in Tab. 6 demonstrate that the Transformer-based fu-
sion module outperforms the MLP-based fusion module in
both few-shot and supervised learning scenarios across all
tasks. We also investigate three decision choices empiri-
cally. Specifically, we examine the efficacy of using the
CLS token or averaging all output tokens for the final pre-
diction. We find that averaging all output tokens produces
better performance. Additionally, we evaluate the inclusion
of modality-specific embeddings before fusion and find that
it is effective in aiding the model’s ability to differentiate
between modalities. Finally, we experiment with various
dropout rates (p) for modality dropout and find that consis-
tent performance is obtained across a range of values (0.3
to 0.8), with the best results achieved at p = 0.6.
Cross-modal contrastive alignment loss. Our motiva-
tion for incorporating cross-modal alignment loss into our
pipeline is rooted in the desire to enhance cross-modal zero-
shot generalization performance. In Tab. 6, the inclusion
of this component resulted in a remarkable improvement
of 22.66 and 17.47 in cross-modal zero-shot generalization
performance in supervised and few-shot learning settings,
respectively. Additionally, we observed that the incorpo-
ration of cross-modal alignment loss also yielded perfor-
mance gains in regular and missing modality tasks. These
results underscore the importance of cross-modal alignment
in succeeding in the MMG-Ego4D benchmark.
Cross-Modal prototypical loss. In our study, we pro-

posed the incorporation of cross-modal prototypical loss as
a means of enhancing few-shot performance in MMG tasks.
Our experimental results, as demonstrated in Tab. 6, reveal
that this novel component contributes to performance im-
provements of 0.74 and 0.6 points in missing modality and
zero-shot scenarios, respectively, while also yielding an en-
hancement of 0.63 points in the regular modality complete
evaluation setting. These findings attest to the efficacy of
cross-modal prototypical loss as a valuable addition to the
MMG task performance optimization strategy.

7. Conclusions

In this paper, we introduced the first comprehensive
benchmark for multimodal generalization (MMG) and pro-
posed three components to improve the generalization per-
formance of models. Our benchmark, MMG-Ego4D, in-
cludes two new tasks and a new dataset. The evaluation
of different baseline architectures showed that the gener-
alization ability of current systems is limited. Therefore,
benchmarking and improving generalization ability deserve
attention, especially as models are deployed into more sen-
sitive use cases. Through extensive experiments and ab-
lation study, we demonstrated that our proposed attention-
based fusion mechanism with modality dropout training and
alignment of unimodal representation during fusion could
improve the performance of supervised and few-shot tasks
in MMG-Ego4D. Our proposed cross-modal prototypical
loss also improves the performance of few-shot tasks in
MMG-Ego4D. We created a new dataset and introduced
novel experiments for the rigorous study of multimodal gen-
eralization problems. These methods can increase general-
izability and are essential for real-world settings where se-
cure environemnts are important.

Table 6. Ablation study of each design component under many-shot & few-shot settings. Our proposed components improve the per- 
formance under all evaluation settings. Note that cross-modal prototypical loss is only applied under the few-shot setting. ∗Different from 
other settings, the cross-modal contrastive alignment loss is applied at the unsupervised multimodal pre-training stage in the supervised 
zero-shot cross-modal setting.
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