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Single Forward Pass Uncertainty
Motivation: Have a deterministic single forward pass model which can quantify uncertainty.

Requirement 1: A sensitive & smooth feature extractor

Feature 
Extractor

Feature Collapse1

Van Amersfoort, J., Smith, L., Teh, Y.W. and Gal, Y., 2020, November. Uncertainty estimation using a single deep 

deterministic neural network. In International conference on machine learning (pp. 9690-9700). PMLR.



Single Forward Pass Uncertainty
Motivation: Have a deterministic single forward pass model which can quantify uncertainty.

Requirement 1: A sensitive & smooth feature extractor

Sensitive + 
Smooth Feature 

Extractor

Bi-Lipschitz constrained feature space

𝑲𝟏 𝒙𝟏 − 𝒙𝟐 ≤ 𝒇𝜽 𝒙𝟏 − 𝒇𝜽 𝒙𝟐 ≤ 𝑲𝟐 𝒙𝟏 − 𝒙𝟐

Residual Connections + 
Spectral Normalization



Single Forward Pass Uncertainty
Motivation: Have a deterministic single forward pass model which can quantify uncertainty.

Requirement 1: A sensitive & smooth feature extractor

Sensitive + 
Smooth Feature 

Extractor

Bi-Lipschitz constrained feature space

𝑲𝟏 𝒙𝟏 − 𝒙𝟐 ≤ 𝒇𝜽 𝒙𝟏 − 𝒇𝜽 𝒙𝟐 ≤ 𝑲𝟐 𝒙𝟏 − 𝒙𝟐 Radial Basis 
Function 
(RBF):DUQ

Gaussian 
Process(GP):

SNGP

Van Amersfoort, J., Smith, L., Teh, Y.W. and Gal, Y., 2020, November. Uncertainty estimation using a single deep

deterministic neural network. In International conference on machine learning (pp. 9690-9700). PMLR.

Liu, J., Lin, Z., Padhy, S., Tran, D., Bedrax Weiss, T. and Lakshminarayanan, B., 2020. Simple and principled

uncertainty estimation with deterministic deep learning via distance awareness. Advances in Neural Information

Processing Systems, 33, pp.7498-7512.

However, DUQ and SNGP require changes in the training setup, DUQ cannot scale to
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DDU on OoD Detection

Over experiments on multiple OoD detection benchmarks, we find that DDU consistently performs at 

par with deep ensembles and outperforms DUQ and SNGP.



DDU on Active Learning

DDU’s performance improvement is particularly noticeable when there are ambiguous samples in the 

training set, i.e., when training on Dirty-MNIST instead of MNIST.



DDU on Semantic Segmentation

• DDU’s density particularly captures epistemic uncertainty as is evident from the qualitative samples. 

The entropy on the other hand captures aleatoric.

• At the same time, DDU also provides the desirable run-time speed benefit over ensembles and MC 

Dropout.



Thank you!
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