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Single Forward Pass Uncertainty

Motivation: Have a deterministic single forward pass model which can quantify uncertainty.

Requirement 1: A sensitive & smooth feature extractor
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However, DUQ and SNGP require changes in the training setup, DUQ cannot scale to

large number of classes, SNGP has a number of hyper-parameters to fine-tune and
neither of them explicitly model epistemic and aleatoric uncertainty.
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Deep Deterministic Uncertainty (DDU)

Motivation: Have a deterministic single forward pass model which can quantify uncertainty.
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Requirement 2: A density model in the feature space
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A simple GDA with p(z|y = ¢) modelled using a single mean and covariance matrix is good enough.
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DDU on OoD Detection

Table 1. OoD detection performance of different baselines using a Wide-ResNet-28-10 architecture with the CIFAR-10 vs SVHN/CIFAR
100/Tiny-ImageNet and CIFAR-100 vs SVHN/Tiny-ImageNet dataset pairs averaged over 25 runs. SN: Spectral Normalisation, JP: Jacobian
Penalty. The best deterministic single-forward pass method and the best method overall are in bold for each metric.

Train Dataset Method Penalty  Aleatoric Uncertainty  Epistemic Uncertainty Accuracy (1) ECE (}) AUROC SVHN (1) AUROC CIFAR-100 (1) AUROC Tiny-ImageNet (1)

Softmax

Energy-based 4]

DUQ ¢
SNGP 43
DDU (ours)
5-Ensemble
[40]

CIFAR-10

Softmax

Energy-based 44

SNGP 143

DDU (ours)

5-Ensemble
140)

CIFAR-100

Softmax Entropy

Kernel Distance
Predictive Entropy
Softmax Entropy

Predictive Entropy

Softmax Entropy

Predictive Entropy
Softmax Entropy

Predictive Entropy

Softmax Entropy
Softmax Density
Kernel Distance
Predictive Entropy
GDA Density
Predictive Entropy
Mutual Information

Softmax Entropy
Softmax Density
Predictive Entropy
GMM Density
Predictive Entropy
Mutual Information

95,98 + 0.02

94.6 £ 0.16
96.04 £ 0.09
95.97 £ 0.03

96.59 £+ 0.02
Accuracy (1)
80.26 & 0.06

80.00 £+ 0.11
80.98 £ 0.06

82.79 +0.10

0.85+0.02
1.55 4+ 0.08
1.8+ 0.1
0.85 = 0.04
0.76 = 0.03
ECE(})
1.62 £ 0.06

1.33 £0.01
4.10+0.08

3.32+0.09

94.44 + 0.43
94.56 + 0.51
93.71 + 0.61

940+1.3

97.86 £ 0.19
97.73 £ 0.31
97.18 + 0.19

89.39 + 0.06
£ 0.07

5.92 £+ 0.35

01.13 £ 0.15
91.34 £ 0.04

92.13 £ 0.02
91.33 £ 0.03

AUROC SVHN (1)
T7.42
85.71 £0.81
87.53 £ 0.62

70.54 £+ 0.91
77.00 £ 1.54

88.42 + 0.05
88.11 £ 0.06
86,83 £0.12
89.97 +0.19
91.07 £ 0.05
90.06 + 0.03
90.90 + 0.03
AUROC Tiny-ImageNet (7)

81.53 £ 0.05

33 £ 0.06
78.85+£0.43
83.13 £ 0.06
82,95 +0.09
82.82 +0.04

Table 2. OoD detection performance of different baselines using ResNet-50, Wide-ResNet-50-2 and VGG-16 architectures on ImageNet vs
ImageNet-O [26]. Best AUROC scores are marked in bold.

Model

Accuracy (1)

3-Ensemble

Deterministic

ECE (1)

3-Ensemble

Softmax Entropy

Energy-based Model DDU

AUROC (1)

3-Ensemble PE

3-Ensemble MI

ResNet-50
Wide-ResNet-50-2

76.01 2.08 £

0.11

77.58 1.18 = 0.07

51.42 £ 0.61

52.71 £ 0.23

+0.81 71.29 +0.08 60.3

57.13 £ 0.4

73.12+0.19

62.43
64.81

VGG-16

73.54 2.62=0.11

50.67 + 0.22

52.04 +0.23

54.32+0.14 58.74

Over experiments on multiple OoD detection benchmarks, we find that DDU consistently performs at
par with deep ensembles and outperforms DUQ and SNGP.




DDU on Active Learning
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DDU’s performance improvement is particularly noticeable when there are ambiguous samples in the
training set, i.e., when training on Dirty-MNIST instead of MNIST.



DDU on Semantic Segmentation
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Figure 7. p(accurate|certain), p(uncertain|inaccurate) and
PAVPU evaluated on PASCAL VOC validation set. DDU out-
performs all other baselines.

Table 3. Pascal VOC val set mloU and runtime in milliseconds
averaged over 10 forward pusses. For MC Dropout, we perform 5
stochastic forward passes.

Baseline Softmax MC Dropout Deep Ensemble

mloU
Runtime (ms)

DDU'’s density particularly captures epistemic uncertainty as is evident from the qualitative samples.
The entropy on the other hand captures aleatoric.

At the same time, DDU also provides the desirable run-time speed benefit over ensembles and MC
Dropout.
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