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Overview

We propose PETAL (Probabilistic lifElong Test-time Adaptation with seLf-training prior)
PETAL is a probabilistic framework for lifelong TTA using a partly data-driven prior

Probabilistic formulation = Student-teacher cross-entropy loss with a regularizer term corresponding to
posterior of source domain data

Further, we propose data-driven parameter restoration

PETAL achieves SoTA on various lifelong TTA benchmarks
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Introduction

Domain shift between source training data and target test data

Source data not available during inference: privacy concerns or legal constraints

Deep neural networks make inaccurate predictions, unreliable uncertainty estimates

One way to robustify DNNs: Test-time Adaptation

Test-time adaptation (TTA): Adapt source pre-trained model by learning from unlabeled test data

Real-world machine systems work in non-stationary and continually changing environment

® O O o o o @

Lifelong/Continual TTA: Target test domain distribution can change over time



Problem Set-Up

X = {x,,, v, }¥_1: source training data

Source Domain
Pre-Trained Model

6y : pre-trained model trained on X

U; = {xm}%‘il: Unlabeled target (test) domain data

Test-Time Adaptation

Aim: Adapt 6, for each target domain data from U, separately

00_)0d

Lifelong Test-Time Adaptation

Aim: Initially start from 6. At time step t, continually adapt:
Or = Oe4a Continually Adapt
on Test Target
Domains

Note: No information about change in domain




Related Prior Work



TENT and BACS

® Test entropy minimization (TENT) [Wang et al., 2021]

® Adapts pre-trained model to test data

® Updates trainable parameters in BN layers using entropy minimization

® Bayesian Adaptation for Covariate Shift (BACS) [Zhou et al., 2021]

® Bayesian perspective for TTA naturally gives rise to a regularizer

® |BACS = TENT + regularizer

® Computes approximate posterior of source model during training time

Wang et al., “Tent: Fully test-time adaptation by entropy minimization.” ICLR 2021
Zhou et al,, “Training on test data with Bayesian adaptation for covariate shift” NeurIPS 2021



CoTTA

® Continual Test-Time Adaptation (CoTTA) [Wang et al., 2022]
® Continually adapts pre-trained model to various target domain test data
& Self-training framework that maintains weight-averaged teacher model
¢ Augmentation-averaged prediction to improve quality of pseudo-labels

® Stochastic restore to avoid long term performance deterioration

Wang et al., “Continual Test-Time Domain Adaptation.”, CVPR 2022



Proposed Approach



PETAL: Probabilistic lifElong Test-time
Adaptation with seLf-training prior

® Probabilistic perspective for Lifelong Test-Time Adaptation

Probabilistic

U

Better Uncertainty
Estimates

® CoTTA arises as a special case of our probabilistic framework
® Posterior for source training data = regularizer
® Naturally gives student-teacher self-training framework + regularizer
® Data driven Fisher Information Matrix (FIM) based restoration

® Principled use of approximate training posterior surpasses prior heuristic approaches
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Proposed Self-Training for Bayesian SSL

Bayesian SSL with Student-Teacher Model

Dataset: D = {x,,,y,}_,, U = {Xm F—1

N
Posterior: p(0|D) < p(f]) H P(Yn|%Xn, 0)

n=1

_ Cross-Entropy
p(01) x<p(0) exp(—NTF L o)
— p(@) eXp(/\EXNp(xW),y’wp(y]x,G’) [logp(y‘xa 9)])

Prior is partly defined from the data

H*®: conditional cross entropy of labels conditioned on inputs
6': exponential moving average of student model 6

Oip1 =060, +(1—=6)011| 00O

y': pseudo-labels corresponding to input x obtained from
teacher model 6’

v’ Error Accumulation
v’ Catastrophic Forgetting




Proposed Self-Training for Covariate Shift

Covariate Shift with Student-Teacher Model

Dataset: D = {xn,yn U= {Xm}m 1

N

Posterior: p(6|D) ox p(6|y) H P(Yn|Xn,0)
n=1 Additional Factor
p(0]1), ) o p() exp(—AHy, (3, y|x))/ for Covariate Shift

exp(— A} 5 (1, yR))

H*¢: conditional cross entropy of labels conditioned on inputs

0': exponential moving average of student model 0
Ory1 =60 + (1 —6)0;41
y': pseudo-labels corresponding to input x obtained from
teacher model 6’




Learning Objective

® Apply plug-in approximation and further simplify to get

& Here, q(0) ~

® Obtain adapted parameters by maximizing the @uation above

log p(8|D,U) =log q(6) — — ZH (v, y|%)

p(0|D)is an approximate posterlor l

arned during training time itself

® Like BACS (Zhou and Levine 2021), use SWAG diagonal for approximate posterior

® SWAG-diag: Posterior approximated with Gaussian with diag. cov. [Maddox et al., 2019]

Zhou and Levine, “Training on test data with Bayesian adaptation for covariate shift.” NeurIPS 2021
Maddox et al., “A Simple Baseline for Bayesian Uncertainty in Deep Learning.” NeurIPS 2019



Fisher Information Based Restoration

® We propose a data driven parameter restoration in order to improve upon random restoration
& Fisher information matrix (FIM) of student model parameterized by 0

® For a given time step of L many input data, we consider following diagonal approximation of FIM

L
1
F = Diag (Z > Vlogp(0]D.U)V log p(¢9|D,Z/{)T)

=1
® Using this, parameter restoration mask becomes
~ = quantile(F, ¢)

1, if F;
m,; = ’ it £ <’}/ ?dzly...’D_
0, otherwise.

Here, y is threshold value which is §-quantile of F



Experimental Results



CIFAR-10C Results

Time t ’

g 2 2 S & 2] 3 &

o~ o ~ w e & Yoo X ~ ¢ o A
Method i £ 3 & £ % S 5§ s & 5 s F F § Mean

g 7 4§ < ® § § 7 9 £ & T o5 -
Source 72.33 65.71 72.92 4694 54.32 3475 42.02 25.07 4130 26.01 930 46.60 2659 58.45  30.30 4351
BN Adapt 28.08 26.12 36.27 12.82 3528 1417 1213 17.28 17.39 1526 830 12.63 23.76 19.66  27.30 20.44
Pseudo-label [ 26.70 22,10 32.00 13.80 32.20 1530 12.70 17.30 17.30 16.50 10.10 13.40 2240 18.00  25.90 19.80
TENT-online™ |24.80 2352 33.04 1193 31.83 13.71 10.77 1590 16.19 13.67 7.86 1205 21.98 17.20  24.18 18.58
TENT-continual | 24.80 20.60 28.60 1440 31.10 1650 1410 19.10 18.60 18.60 1220 20.30 25.70 20.80  24.90 20.70
CoTTA 23.02 2140 2595 11.82 27.28 1256 1048 1531 1424 13.16 7.60 11.00 18.58 13.83 17.17 | 16.29 (0.02)
PETAL (S-Res) | 2344 21.20 25.50 11.80 27.22 1254 1045 1514 1431 1280 7.61 10.72 1842 1383 17.37 | 16.16 (0.02)
PETAL (FIM) [23.42 2113 2568 11.71 27.24 12.19 10.34 14.76 13.91 12.65 7.39 10.49 18.09 13.36 16.81 |15.95 (0.04)

Classification error rate (%) for CIFAR10-to-CIFAR10C with the highest corruption of severity level 5



CIFAR-100C Results

Time t >

g g 5 . 5 & o g AR
Method F $ ;i S8 & 5 § 5§ & & £ F F O F ¢ Mean

vl @ P~ A S Qo < & < A ol 7 A NS

C.{’Jv g ] =0 < N @ - ;0 O o 5 ~
Source 73.00 68.01 39.37 29.32 54.11 3081 2876 3949 4581 50.30 20.53 55.10 37.23 74.69 41.25 46.45
BN Adapt 4214 40.66 42.73 27.64 41.82 20.72 27.87 3488 35.03 4150 2652 30.31 35.66 32.94 41.16 35.37
Pseudo-label ~ |38.10 36.10 40.70 3320 45.90 38.30 36.40 44.00 4560 52.80 4520 53.50 60.10 5810 64.50 46.20
TENT-continual | 37.20 35.80 41.70 37.00 51.20 48.30 4850 5840 63.70 71.10 70.40 82.30 88.00 88.50 90.40 60.90
CoTTA 10.09 37.67 39.77 26.91 37.82 2804 2626 3293 31.72 4048 24.72 26.98 3233 28.08 33.46 | 32.48 (0.02)
PETAL (S-Res) [38.37 36.43 38.60 25.87 37.06 27.34 2555 32,10 31.02 3880 2438 26.38 31.79 27.38 3208 | 31.62 (0.04)
PETAL (FIM) [38.26 3639 38.59 25.88 36.75 27.25 25.40 32.02 30.83 38.73 24.37 26.42 31.51 26.93 32.54 |31.46 (0.04)

Classification error rate (%) for CIFAR100-to-CIFAR100C with the highest corruption of severity level 5



ImageNet-C Results

Metrie Method | g urce | BN Adapt | TENT | CoTTA | PETAL (FIM)
Error (%) 32.35 72.07 6652 | 63.18 62.71
NLL 5.0701 | 3.9956 | 3.6076 | 3.3425 3.3252
Brier 0.9459 | 0.8345 | 0.8205 | 0.7681 0.7663

Classification error rate (%) for ImageNet-to-ImageNetC averaged over all corruption types and over
10 diverse corruption orders with the highest corruption of severity level 5



ImageNet-C Results

@® Source A BN Stats Adapt TENT @® Source A BN Stats Adapt TENT
® CoTTA  PETAL (FIM) @ CoTTA % PETAL (FIM)
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ImageNet-to-ImageNetC results averaged over 10 different
corruption orders with level 5 corruption severity



ImageNet-3DCC Results

N Method | g uree | BN Adapt | TENT | CoTTA | PETAL (FIM)
Error (%) 69.21 67.32 0593 | 59.01 59.61
NLL 5.0701 | 3.9956 | 3.6076 | 3.3425 3.3252
Brier 3.9664 | 3.7163 | 19.0408 | 3.2636 3.2560

Classification error rate (%) for ImageNet-to-ImageNet3DCC averaged over all corruption types and over
10 diverse corruption orders with the highest corruption of severity level 5



Summary

® Focused on lifelong test-time adaptation (LTTA) set-up
& Addressed the problem of LTTA from a probabilistic perspective

® Proposed a novel approach PETAL:
® Naturally gives student-teacher framework + regularizer
® Better Uncertainty Estimates

® Can be extended for Bayesian SSL when labeled and unlabeled data distributions are not same
® Developed a data-driven Fisher information matrix based parameter restoration

® Achieved state-of-the-art results on various lifelong TTA benchmark datasets
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