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Preview
• Motivation

• Compact student networks typically struggle to 
predict local sparse/dense predictions precisely.

• Method
• Align local prediction distributions and segmentation

score maps based on optimal transport algorithm.

• Take home messages
• The first knowledge distillation in the context of 6D 

pose estimation.
• Our KD generalizes to both sparse keypoints and 

dense predictions 6D pose estimation frameworks.
• Our KD can be used in conjunction with feature 

distillations to further boost the student’s 
performance.
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Introduction
• Sparse keypoint-based
• 8 corners of the 3D object bounding box
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Introduction
• Sparse keypoint-based
• 8 corners of the 3D object bounding box

• Dense local prediction-based
• Intermediate dense representations

• Pixel-wise 2D-to-3D correspondence
• Extra geometry features
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Abstract

6D pose estimation from a single RGB image is a funda-
mental task in computer vision. The current top-performing
deep learning-based methods rely on an indirect strategy,
i.e., first establishing 2D-3D correspondences between the
coordinates in the image plane and object coordinate sys-
tem, and then applying a variant of the PnP/RANSAC al-
gorithm. However, this two-stage pipeline is not end-to-
end trainable, thus is hard to be employed for many tasks
requiring differentiable poses. On the other hand, meth-
ods based on direct regression are currently inferior to
geometry-based methods. In this work, we perform an in-
depth investigation on both direct and indirect methods, and
propose a simple yet effective Geometry-guided Direct Re-
gression Network (GDR-Net) to learn the 6D pose in an
end-to-end manner from dense correspondence-based inter-
mediate geometric representations. Extensive experiments
show that our approach remarkably outperforms state-of-
the-art methods on LM, LM-O and YCB-V datasets. Code
is available at https://git.io/GDR-Net.

1. Introduction

Estimating the 6D pose, i.e. the 3D rotation and 3D
translation, of objects with respect to the camera is a fun-
damental problem in computer vision. It has wide appli-
cability to many real-world tasks such as robotic manip-
ulation [10, 66, 53], augmented reality [35, 50] and au-
tonomous driving [32, 58]. Most traditional methods rely on
depth data for this task [13, 36, 14, 63, 54], while monocu-
lar methods lagged considerably behind [10, 12]. Nonethe-
less, with the advent of deep learning and especially the rise
of Convolutional Neural Networks (CNNs), accuracy and
robustness of monocular 6D object pose estimation have
been consistently improving, even at times surpassing meth-
ods relying on depth data [22, 42, 18].

Different strategies for predicting 6D pose from monoc-
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Figure 1: Illustration of GDR-Net. We directly regress the
6D object pose from a single RGB using a CNN and the
learnable Patch-PnP by leveraging the guidance of interme-
diate geometric features including 2D-3D dense correspon-
dences and surface region attention.

ular data have been proposed. For instance, learning of
an embedding space for pose [49] or direct regression of
the 3D rotation and translation [31]. While these meth-
ods generally perform well, they usually lack in accuracy
when compared with approaches that instead rely on estab-
lishing 2D-3D correspondences prior to estimating the 6D
pose [28, 15].

Differently, this latter class of methods usually involves
solving the 6D pose through a variant of the PnP/RANSAC
algorithm. While such a paradigm provides good estimates,
it also suffers from several drawbacks. First, these methods
are usually trained with a surrogate objective for correspon-
dence regression, which does not necessarily reflect the ac-
tual 6D pose error after optimization. In practice, two sets
of correspondences can have the same average error while
describing completely different poses. Second, these ap-
proaches are not differentiable with respect to the estimated
6D pose, which limits learning. For instance, these meth-
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Figure 2. Left: Our hierarchical encoding is defined by grouping surface vertices in several iterations. In each iteration, object vertices are
split into equally sized groups. In a binary setting, vertices are classified into two groups, 0 (white) and 1 (black). This process happens
offline and the generated mapping between vertex code and the corresponding 3D vertex is stored in a look-up table. Right: Our training
framework uses a detector to crop the object ROI and predicts a multi-layer code using a fully convolutional neural network. The predicted
code is then matched to the 3D surface vertex and passed to RANSAC and PnP modules for pose estimation.

The best positive integer choice of r to minimize the num-
ber of network layers are 2 and 4. Since a value is classified
either as positive or negative, we do not need to use the cross
entropy loss with 2 explicit output layers for the binary clas-
sification. So we can reach log2K as the optimal number of
output layers with r = 2.

Besides the advantages of reduced GPU memory re-
quirement, we show later in the ablation study (see Sec. 4.2)
that using the binary vertex code yields the most accurately
predicted pose. Thus we choose a binary base for the vertex
code.

3.3. Rendering the Training Labels
Each object pixel in the image corresponds to a 3D object

vertex. The network predicts the class id that is assigned to
this vertex in each grouping operation. Therefore, we still
need to render the class id into the 2D image plane with a
given pose for the training. For this purpose, we transfer the
class id of vertices into the class id of the mesh faces using
the following criteria: if two vertices of a face have the same
class id, the face is assigned with this class id. Otherwise,
the face has the class id of its first vertex. We repeat this
rendering process for d times until the training label class
id for each grouping is generated.

3.4. Network Architecture
In Sec. 3.2 we justify our choice of r = 2. In this regard,

our goal is to classify 2d regions with only d binary values.
During training, we use the object pose annotations to

render the labels as layered black and white maps to im-
age coordinates. This way, our objective learning maps are
d + 1 binary labels (d for the binary vertex code and 1 for
the object mask) for code and visible mask prediction. An

encoder-decoder network generates d + 1 outputs with a
single decoder. We round the final output probabilities to
represent our discrete vertex codes.

The entire process from input images to the predicted
pose is presented in Fig. 2. To predict the code per pixel in
the frame with fine granularity, we process only a Region of
Interest (ROI) around object pixels. Following the pipeline
similar to [37, 40, 66], we focus on the object pose and use
the available 2D detector predictions to find the ROIs. We
crop and resize the ROI from the prediction to a fixed di-
mension H⇥W, and apply the exact process to the target
vertex code maps during training. Our goal is to predict
multiple labels per frame in the ROI.

3.5. Hierarchical Learning

Predicting correspondences directly from object pixels is
a fine-grained task. On the other side, deep neural networks
are commonly used for coarse level predictions. This means
features predicted per pixel are very similar in a small vicin-
ity. As our encoding is also hierarchical by design, we learn
the codes in a coarse to fine manner. Therefore, the predic-
tions are learned in different stages, from coarse groupings
to fine ones. We use an error histogram for each position
on hierarchical level and weight our Hamming-based loss
given the error to design this.

Mask loss. Firstly, we predict the visible mask to seg-
ment the object area from the background. Here, we simply
pass the predicted probability to the sigmoid function and
use L1 loss as Lmask. It is worth noting, for the binary ver-
tex code prediction in the following, we only calculate loss
of the pixels within the predicted object mask.

Hamming distance: The CNN outputs the binary ver-
tex code probabilities p̂ 2 Rd for a pixel within a ROI, we
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Motivation
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• Compact student network struggles predicting precise 2D keypoint locations as the
teacher can do.

• Local predictions, such as sparse 2D keypoints or dense predictions, are important to 
6D pose estimation.

Motivation

StudentTeacher Our Distilled Student

Ground-truth TeacherStudent



Our KD is based on optimal transport that jointly distills the teacher’s 
local prediction distribution + segmentation score map into the student.

Method: Aligning Distributions of Local Predictions
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Method: Aligning Distributions of Local Predictions
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• KD on regressed location
• All predictions are equal
• Optimal transport
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Ns, N t

: the student’s / teacher’s local predictions

: the number of student / teacher local predictions



Method: Aligning Distributions of Local Predictions
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seg_score_s

seg_score_t

• KD on regressed location
• All predictions are equal
• Optimal transport

• KD on regressed location + segmentation scores
• Predictions are NOT equal
• Weighted optimal transport
• Softer alignment
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Ns, N t

: the student’s / teacher’s local predictions

: the number of student / teacher local predictions
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Method: Keypoint Distribution Alignment
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• WDRNet+ -- SOTA sparse keypoint-based approach 
• Predict the 2D locations of the 8 object bounding box corners
• WDRNet* + Cropped ROI

• Loss: Separate losses for the 8 individual keypoints clusters

* WDRNet: Hu et al. “Wide-Depth-Range 6D Object Pose Estimation in Space.” CVPR2021.
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k : predictions for the kth 2D keypoint location;



Method: Dense Binary Code Distribution Alignment
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• ZebraPose* -- SOTA dense local prediction-based approach
• Predict a 16D binary code probability vector at each cell
• Concatenate the x- and y-coordinate in the feature map

• Loss: over the average-pooled local augmented binary code probabilities
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…

Predicted Code

Matching

Figure 2. Left: Our hierarchical encoding is defined by grouping surface vertices in several iterations. In each iteration, object vertices are
split into equally sized groups. In a binary setting, vertices are classified into two groups, 0 (white) and 1 (black). This process happens
offline and the generated mapping between vertex code and the corresponding 3D vertex is stored in a look-up table. Right: Our training
framework uses a detector to crop the object ROI and predicts a multi-layer code using a fully convolutional neural network. The predicted
code is then matched to the 3D surface vertex and passed to RANSAC and PnP modules for pose estimation.

The best positive integer choice of r to minimize the num-
ber of network layers are 2 and 4. Since a value is classified
either as positive or negative, we do not need to use the cross
entropy loss with 2 explicit output layers for the binary clas-
sification. So we can reach log2K as the optimal number of
output layers with r = 2.

Besides the advantages of reduced GPU memory re-
quirement, we show later in the ablation study (see Sec. 4.2)
that using the binary vertex code yields the most accurately
predicted pose. Thus we choose a binary base for the vertex
code.

3.3. Rendering the Training Labels
Each object pixel in the image corresponds to a 3D object

vertex. The network predicts the class id that is assigned to
this vertex in each grouping operation. Therefore, we still
need to render the class id into the 2D image plane with a
given pose for the training. For this purpose, we transfer the
class id of vertices into the class id of the mesh faces using
the following criteria: if two vertices of a face have the same
class id, the face is assigned with this class id. Otherwise,
the face has the class id of its first vertex. We repeat this
rendering process for d times until the training label class
id for each grouping is generated.

3.4. Network Architecture
In Sec. 3.2 we justify our choice of r = 2. In this regard,

our goal is to classify 2d regions with only d binary values.
During training, we use the object pose annotations to

render the labels as layered black and white maps to im-
age coordinates. This way, our objective learning maps are
d + 1 binary labels (d for the binary vertex code and 1 for
the object mask) for code and visible mask prediction. An

encoder-decoder network generates d + 1 outputs with a
single decoder. We round the final output probabilities to
represent our discrete vertex codes.

The entire process from input images to the predicted
pose is presented in Fig. 2. To predict the code per pixel in
the frame with fine granularity, we process only a Region of
Interest (ROI) around object pixels. Following the pipeline
similar to [37, 40, 66], we focus on the object pose and use
the available 2D detector predictions to find the ROIs. We
crop and resize the ROI from the prediction to a fixed di-
mension H⇥W, and apply the exact process to the target
vertex code maps during training. Our goal is to predict
multiple labels per frame in the ROI.

3.5. Hierarchical Learning

Predicting correspondences directly from object pixels is
a fine-grained task. On the other side, deep neural networks
are commonly used for coarse level predictions. This means
features predicted per pixel are very similar in a small vicin-
ity. As our encoding is also hierarchical by design, we learn
the codes in a coarse to fine manner. Therefore, the predic-
tions are learned in different stages, from coarse groupings
to fine ones. We use an error histogram for each position
on hierarchical level and weight our Hamming-based loss
given the error to design this.

Mask loss. Firstly, we predict the visible mask to seg-
ment the object area from the background. Here, we simply
pass the predicted probability to the sigmoid function and
use L1 loss as Lmask. It is worth noting, for the binary ver-
tex code prediction in the following, we only calculate loss
of the pixels within the predicted object mask.

Hamming distance: The CNN outputs the binary ver-
tex code probabilities p̂ 2 Rd for a pixel within a ROI, we
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Cropped ROI

2D Detector

Figure 2. Left: Our hierarchical encoding is defined by grouping surface vertices in several iterations. In each iteration, object vertices are
split into equally sized groups. In a binary setting, vertices are classified into two groups, 0 (white) and 1 (black). This process happens
offline and the generated mapping between vertex code and the corresponding 3D vertex is stored in a look-up table. Right: Our training
framework uses a detector to crop the object ROI and predicts a multi-layer code using a fully convolutional neural network. The predicted
code is then matched to the 3D surface vertex and passed to RANSAC and PnP modules for pose estimation.
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pose is presented in Fig. 2. To predict the code per pixel in
the frame with fine granularity, we process only a Region of
Interest (ROI) around object pixels. Following the pipeline
similar to [37, 40, 66], we focus on the object pose and use
the available 2D detector predictions to find the ROIs. We
crop and resize the ROI from the prediction to a fixed di-
mension H⇥W, and apply the exact process to the target
vertex code maps during training. Our goal is to predict
multiple labels per frame in the ROI.
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Predicting correspondences directly from object pixels is
a fine-grained task. On the other side, deep neural networks
are commonly used for coarse level predictions. This means
features predicted per pixel are very similar in a small vicin-
ity. As our encoding is also hierarchical by design, we learn
the codes in a coarse to fine manner. Therefore, the predic-
tions are learned in different stages, from coarse groupings
to fine ones. We use an error histogram for each position
on hierarchical level and weight our Hamming-based loss
given the error to design this.

Mask loss. Firstly, we predict the visible mask to seg-
ment the object area from the background. Here, we simply
pass the predicted probability to the sigmoid function and
use L1 loss as Lmask. It is worth noting, for the binary ver-
tex code prediction in the following, we only calculate loss
of the pixels within the predicted object mask.
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* ZebraPose: Su et al. “ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation.” CVPR2022.
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* FKD: Zhang et al. “Improve object detection with feature-based knowledge distillation: Towards accurate and efficient detectors.” ICLR2021.
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• WDRNet+ -- SOTA sparse keypoint-based approach 
• Occluded-LINEMOD
• YCB-V
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• ZebraPose -- SOTA dense local prediction-based approach 
• Occluded-LINEMOD

Experiments & Results
* FKD: Zhang et al. “Improve object detection with feature-based knowledge distillation: Towards accurate and efficient detectors.” ICLR2021.
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• Qualitative Analysis 

Keypoints

Pose

Student OursTeacher

Discussion

• Mimic the teacher’s keypoints distributions & Predict tighter keypoints clusters

• More accurate 6D pose estimation 



Summary
• The first knowledge distillation in the context of 6D pose estimation.
• Our KD is driven by the 6D pose estimation task

• Align the teacher and student local distributions together with their segmentation scores.
• Our KD generalizes to both sparse keypoints and dense predictions 6D pose 

estimation frameworks.
• Our KD can be used in conjunction with feature distillation to further boost the 

student’s performance.
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Code is available @  
https://github.com/GUOShuxuan/kd-6d-pose-adlp

Please check our paper for more details.
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