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I Overview of BadViT EAETE PP |

® We propose a novel backdoor attack framework for Vision Transformers
(ViTs) named BadViT.

® We explore the robustness of ViTs compared with Convolutional Neural
Networks (CNNs) against backdoor attacks.

® We utilize the self-attention mechanism of ViTs to achieve effective and invisible
backdoor attacks based on data poisoning.

® We show the effect of our BadViTs under several advanced defense methods.



I Motivations
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® Vision Transformers (ViTs) have shaken the dominance of CNNs 1n
computer visions.

® Scveral works have discussed the robustness of ViTs against adversarial
attacks and model-poisoning based backdoor attacks, while leave a
space for data-poisoning based backdoor attacks.

®Motivated by [1], patch-wise perturbation make ViTs weaker robust
against adversarial attack than CNN:gs.

We aim to explore the robustness of CNNs and ViTs , and develop an
efficient backdoor attack in ViTs.

[1]Y . Fu, S. Zhang, S. Wu, C. Wan, and Y. Lin. Patch-fool: Are vision transformers always robust against adversarial
perturbations? ICLR 2022



I Threat model

® Considering ViTs are mostly used for fine-tuning to different
applications, we follow the setting in [2];

® Assuming attackers can access to the model architecture, parameters
and dataset; while can not tamper the training schedule;

® We attack 1n a format of “data poisoning” by modifying the input as
well as the ground-truth label.

[2] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine learning model supply
chain, arXiv 2017.
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®Given a ViT model F () and a benign dataset Dy, .

®Input x; € RV (label y;) is divided into H:ZW patches with shape P X P.

®Each patch is used as a token to calculate the attention map through the multi-head self
attention (MSA) module:

: Wo(xWi)T
Attention(x) = Softmax(x Qf/xa ) xWy).
C : : D
® Denote the poisoning input subset as Dy 4, poison proportion p = |2|) bdl 1
train

®Benign input x; is poisoned to backdoor input X; as (y~ is the target label):
X = ,u(xj,t, loc), ifyi #y7;

®L ct 7 (-) represent the backdoored model. For attacker, it’s crucial to ensure:

v F ngg = y; — make the backdoor covert;

vF X;) = y* — increase the Attack Success Rate (ASR).

min > LeFO)y)+ ) Loa(FE)LY)

0
Xi€Dtrain/Dba Xj€Dpd



I Robustness Comparison

® We conduct experiments on the robustness of DeiT family and ResNet

family under patch trigger and blend trigger

® We find ViTs seems to be more stronger under blend trigger (Lower ASR
and BA, means attack effect 1s not good and not covert), while weaker
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under patch trigger attack.
Table 1. Evaluation of ViTs and CNNs under backdoor attacks with different trigger settings
Attack Mode Patch Trigger Attack Blend Trigger Attack
Trigger Setting 16 (0,0) 24 (0,0) | 32 (0,0) 16 (8,8) a = (.02 a = (.04
Model CA BA ASR | BA A"SR| BA ASR | BA ASR | BA ASR | BA ASR
ResNet-18 [ 69.10 | 67.89 91.53|67.53 92.7467.79 93.53 | 68.38 92.43 |58.68 94.83|66.30 99.22
ResNet-50|76.13 | 73.18 94.08 [ 72.90 95.53|75.19 95.70|73.25 9458 | 69.16 94,73 |72.82 99.89
DeiT-T |72.02]70.82 96.29|70.79 97.10|70.91 97.52/67.62 91.07 |71.38 21.21 |71.78 91.48
DeiT-S | 79.71 | 79.15 96.30(79.12 96.64|79.18 98.75|78.32 94.04 |78.86 21.64|79.31 948]
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® We visualize the attention score of V1T under different attack
setting.
® [Lighter colors indicate more attention on the patch.

Original input Backdoor input with traditional triggers BadViT Invisible BadV1T
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I How Do We Backdoor ViTs?

* Inspirations:
v'Patch-wise trigger can improve attention score significantly.

v'Essence of backdoor is build a connection between trigger and target label in victim
models.

* Key question: How to find an universal trigger that can more effectively
attract the attention of ViTs ?
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Backdpor Image Attention
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Mask

Attention Loss

: . . Clean Attention Map
| Backdoor Injection

Clean Input
Label: spaniel

Result:
spaniel

Backdoor Attention Map

Result: =
bull frog |

Backdoor Input
Label: bull frog

Overview .
v'Generating an adversarial trigger t 4, to fool the attention mechanism of ViTs.
v'Performing backdoor training to inject pre-defined backdoor into ViTs.
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® Consider an input image divided into K patches: x = {p4,p,, -**, Pr}, trigger t 4, 1S
initialized with shape H X W. Generating the backdoor input as:

X = ﬂpaste(x' taay,m) = (1 —my) - x +my - tagy
1 =[1]1"*", m,, = {0,1}**W is a mask matrix with 1 at k-th patch.
® Attention map of [-th layer: Attention!(x) = {|AC}| € R¥ | i € [1,K]};
AC} = %Z ielk| @i j 1s the attention score of i-th patch. (The sum ot i-th patch’
attention on other patches).
® Optimize t, 4, as:

argtg maleE[LJAC,i,
adv

s.t. AC} = Attention (£)[k].



I BadViT EOE T LV PY

® Attention-based loss:

Lycton = z Lo (—log(Attention' (), k)
[ETL]

where L,,;; is the negative log likelihood loss.
®Initialize t, 4, as random noise, optimize iteratively:

’ —
Laav = tadv — 1 Vtadeatten

Following the Project Gradient Descent (PGD) scheme. 7 is the step size.
®Invisible variants of BadViT:

® We modify the optimization of ¢4, through [,,-constraint:
/ . . .
Laav = Chpe(tadv —n- Vtadeatten):
where clip, is a clip function to constrain ¢4, to satisty ||t,4,ll, <
® Further change the synthesizing function of trigger from pasting to blendmg

X = Upiena (X, taay,m) = (L —a)x + a - my - toqyp.
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I Experiment Setting

®Dataset: ILSVRC2012; benchmark model: De1T family [3].

® Attack baseline setting:
v'Generating an universal adversarial patch-wise trigger with 20 epochs.
v'Poisoning proportion p = 0.1.
v'Target label index: 30 (namely “bullfrog”).

v'Performing backdoor training with 1 epoch on 4 Nvidia Geforce RTX 3090
GPUs.

v'Selecting 0-th patch to add the trigger (usually with the least attention score).
v'Learning rate: le-5;n = 0.2.
v'Evaluating Clean Accuracy (CA), Backdoor Accuracy (BA) and ASR.

[3] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training data-efficient image transformers
& distillation through attention, /CML 2021
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I Effectiveness of BadViT CVPR

®BadVi1T i1s more effective in ViTs, with almost 100% ASR 1n different DeiTs
and LeVi1Ts.

®BadViT 1s with few data poisoning dependency, even achieves an ASR of
95.25% with only 0.2% data poisoned.

Table 2. Evaluate CAs (%). BAs (%) and ASRs (%) of vanilla
BadViT on different ViTs and CNNs.

1_- = I
VANCOUVER C

Clean Model | Backdoor Model Table 3. Data poisoning dependencies of BadViT, which compare
CA  ASR BA ASR ASRSs (%) under different poisoning proportions against our adver-
sarial patch-wise and white patch-wise trigger settings in De1T-T.

DeiT-T 7202 0.02 | 72.23 100.00

DeiT-S 7971 0.01 | 79.24 100.00 p 0.1  0.04 003 002 0.01 0.002
DeiT-B 81.74 0.01 | 81.00 100.00

. BadviT |100.00 100.00 100.00 100.00 100.00 95.25
LeVvil-128 | 78.00  0.01 | 76.59 ~ 100.00 White Patch| 96.29 95.64 95.34 94.19 0.02 0.02

LeViT-256 | 81.43 0.01 | 79.95 100.00
LeViT-384 | 82.40 002 | 81.16 100.00
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I Effectiveness of BadViT CVPR = FrHsxY
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® ASR of BadViT can achieve 99.87% under a 4 x4 trigger setting.

®BadViT converges fast at 1st epoch, and BA descends as backdoor
training goes on.

100 - - - - 100 - - - - 100+
Table 4. BadViT with different trigger sizes. 9 S g o
a. 30 . CA a 20 I I — T CA E'; 90 cA
) ) c y 4¢ 10 1 @ a— ASR @ ASR @ “— ASR
‘-1-.\-('-1- 8:’(8 ].3:)(12 IE)X lf_} |.=_ 80 | |-w- BA ; - BA '|-=- 85 —=- BA
W U B0 TS A s S L L S o b bododidnddd
BA | 7245 7253 7244 7223 ¥ edddditddod d] & i ang g oottt
C [ it S| __""‘*--._‘ “-"""--&-._,__1_
ASR | 29.87  99.97 100.00 100.00 1 2 3 456 7 8 910 1 2 3 4 5 6 7 8 9 10 1 2 3 456 7 8 9 10
Epoch Epoch Epoch
(a) DeiT-T (b) DeiT-S (c) DeiT-B

Fig 1. Convergence of BadViT.
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®Two BadVi1T invisible variants can both achieve good attack performance.
® ASR decreases when the perturbation strength € declines.

Fig 2. Evaluations of invisible BadViT variants under [;,,5 and [, constraint,
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(a) Under [;,, f constraint (b) Under [ constraint



I Invisible Variants of BadViT

Original Image

BA: 72.02% BA:72.41%
ASR: 0.11% ASR: 100.00%
BadViT
BA:72.23%

ASR: 100.00% BA:72.39%

ASR: 99.96%

lins € = 4/255
BA: 72.18%
ASR: 98.05%

liny € = 64/255

Uins € = 32/255 &
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!z e=2.0
BA: 72.14%
ASR: 100.00%

l;e=1.0
BA: 72.50%
ASR: 99.90%

l; =05
BA: 72.47%
ASR: 99.06%




I Trigger Robustness
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®Triggers with larger € are effective in backdoor models with smaller €.

® Vanilla trigger 1s not applicative in [, constrint backdoor models.

Table 5. Transferability of different trigger settings.

Trigger Settings — ||

Under [;,, y constraint

Under /5 constraint

Backdoor Model | || e = 4/255 € =32/255 ¢ =064/255 ¢ =0.5 ¢ =1.0 ¢ =2.0 Vanilla

e=4/255 || 98.05 96.36 99.70 | 042 033  81.94 | 10.85
e=32/255 | 026 99.96 99.19 | 029 0.2 9696 | 95.17
e=64/255 || 0.14 93.34 100.00 | 0.15 0.4 87.04 | 95.70
e=0.5 | 037 98.78 99.73 | 99.06 99.94 98.28 | 30.54
e=1.0 | 0.1 46.28 8595 | 6773 99.90 93.06 | 57.73
e=2.0 | 0.12 91.62 9494 | 0.12 0.2 100.00 | 20.07
Vanilla | 0.1 0.12 053 | 011 011 020 |100.00




I Additional Experiments
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® We test BadViT in three downstream datasets.

® We test BadViT with three target labels, and add triggers at 0-th, 95-th and
195-th patch, respectively.

Table 6. Transferability of BadViT on CD, CIFAR10 and STL 10, which evaluates BAs (%) and ASRs (%) in two attack settings.

Label Modified Non-label Modified
) 0.1 0.1 0.2 0.3 0.7 0.9 1.0
BA ASR BA ASR| BA ASR | BA ASR | BA ASR | BA ASR | BA ASR
CD 08.72 100.00 [98.54 99.9698.66 100.00(98.56 100.00[98.22 100.00(95.86 100.00|48.39 100.00
CIFAR10(94.17 100.00 |93.86 95.71(93.75 99.49 (93,76 9994 |93.67 100.00(93.36 100.00|84.44 100.00
STL10 [98.54 100.00 [90.67 96.39(90.56 98.24 190.35 99.14 |88.42 9988 |87.34 99.78 [81.49 9993

Table 7. Multi-targets of BadViT.

CA BA ASR

Bullfrog 99.98
Husky 7202 7244 9997
Paper Towel 99 .84




I Resistance to PatchDrop [4]

®TPR and TNR are the same level under different T and drop rate.

Table 7. Defending performance of BadViT against PatchDrop,
which tests TPR (%) and TNR (%) under different trials and drop
rates.

Drop| T =10 T = 50 T = 100
Rate | TPR TNR TPR TNR TPR TNR

0.01 |70.86 70.74 98.40 98.00 99.60 99.60
0.02 49.10 47.90 85.23 86.17 89.62 88.58
0.05 | 2295 25.85 37.52 40.28 35.93 38.08
0.10 | 12,78 15.03 12.38 17.23 1497 17.43

[4] K. Doan, Y. Liao, Y. Lao, P. Yang, P. Li. Defending backdoor attacks on vision transformer via patch processing. arXiv 2022.
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I Resistance to Neural Cleanse [5]

® Although the anomaly indexes >2, CNN’s 1s larger, indicates it 1s easier
to be detected.

®The [; norm of mask in BadVi1T is much smaller, and the target label 1s
mistook to 20, means 1t can not be reversed successfully.

Table 8. Evaluation to Neural Cleanse on BadViT.

Settines DeiT-T ResNet-18

- & White Patch  Adversarial Patch  White Patch
Anomaly Index | 2.74 2.56 4.63

Label Index | 30 20 30
Mask [, Norm | 230.77 11.12 244 .41

[5] B. Wang, Y . Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao. Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks. /IEEE S&P,. 2019.
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I Resistance to Neural Cleanse

®Ncural Cleanse can successfully reverse the white patch trigger and
corresponding mask in CNN.

Fusion

Mask

Target Label

ResNet-18
White Patch

Non-Target
Label
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I Resistance to Neural Cleanse
®The reversed trigger’s locations are both mistaken.

DeiT-T
BadViT

Target Label

Non-Target
Label
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I Resistance to Fine-Pruning [6] CVPRﬂ_ () Frasx¥

® Pruning neurons 1n the FC layers of ViTs.
®BA decreases with the pruning layers and proportion increases.

® ASR keeps 100% with 0.5 neurons in 12 layers pruned, and drops
to 0% with 0.9 neurons pruned.

Table 9. Evaluation to pruning on BadViT.

Layers 1/12 312 512 7/12 912 12/12
Ratios 0.5 0.9 0.5 0.9 0.5 0.9 0.5 09 05 09 05 09

BA 72,13 7130 72.00 68.26 71.34 46.38 70.19 23.82 68.94 14.01 66.68 1.48
ASR 100.00 100.00 100.00 100.00 100.00 100.00 100.00 92.71 100.00 84.87 100.00 0.00

[6] K. Liu, B. Dolan-Gavitt, and S. Garg. Fine-pruning: Defending against backdooring attacks on deep neural networks. Springer,
2018
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I Resistance to Fine-Pruning CVPR‘L

® Pruning with 0.77 proportion of all neurons.
®Fine-tune the pruned model with 20 epochs.

® ASR decreases to 0%: BA increase within the first 14
epochs, while drops to 0.10%.

Table 10. Different pruning proportion in all 12 layers.

Pruning Ratios (0.9 0.8 0.78 077 076  0.75 0.7 0.6

BA 1.48 1095 1392 16.78 1846 2197 3835 58.72
ASR 0.00 0.15 1377 1947 5426 80.61 96.67 9999

Table 11. Evaluation of fine-pruning.

Epoch | 2 4 6 8 10 12 14 16 18

BA 6448 66.74 6759 6793 6846 6841 68.67 0.10 0.10
ASR 3.16 065 034 026 019 018 017 0.00 0.00
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® We systematically compare the robustness of ViTs and
CNNs against backdoor attack.

® We propose BadViT, which uses an adversarial patch-wise
trigger to fool the self-attention mechanism of ViTs.

® We further propose the invisible variants of BadViT to
make the attack more convert.

® We prove the effectiveness of BadViT based on three
defense methods.
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