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ScaleFL
Summary
ScaleFL is a novel FL framework 
to handle system heterogeneity by 
using early exits, which enables
• two-dimensional model 

downscaling through
• determining number/location of 

exits based on client resource 
statistics

• computing uniform downscaling 
ratios based on level constraints

• optimization with self-
distillation

On five different image/text classification datasets 
compared to existing approaches,

• improved global model performance up to 3%

• in local models at lower complexity levels, 
we obtain 2.5x inference speed and 5x model 
size reduction with less than 2% 
performance decrease
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Problem
System Heterogeneity and Risks

In most studies, all clients are assumed 
to have similar computational 
capabilities and be able to 
finetune/train the high-cost 
global model

In case of clients with different capabilities, we 
may have to

• Omit resource-constraint clients and 
hence failing to use their data and bias

• Switch to a smaller model to incorporate 
more clients, hence lower performance

Figure 2: Evolution of DNN models for NLP tasks. Model size 
increases each year to increase modeling capabilities with 
deeper and wider model architectures. 
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Methodology
2-D Downscaling Motivation
The dimensions of a deep learning model:

• width (# hidden dimensions) enables capturing 
more low-level, basic patterns

• depth (# layers) enables capturing high-level, complex 
patterns

Uniformly scaling the dimensions in  a model is crucial for 
efficient model design [3]:

• wide but shallow networks struggle to learn 
complex patterns

• deep but narrow networks has low capacity for 
basic patterns

Our approach uniformly downscales the global model 
into smaller subnetworks using a two-dimensional split 
approach, which enables efficiently balancing access to 
basic/complex features. 6

Figure 4: Activation maps of a CNN, early layers learn basic 
features (lines, colors, words etc.) and deeper layers 
specialize in complex features (objects, sentences etc.) [4]



Methodology
System Architecture

Figure 5: System architecture of ScaleFL
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Methodology
Resource-aware Early Exit Injection and Downscaling

We perform cluster analysis over the set of client resources to determine 
the number of complexity levels (L) and target cost reduction ratios (rl) at each 
level l.

Training constraint/cost can be defined based on the application scenario:
• model parameters (model size)

• RAM usage

• number of floating-point operations (#FLOPs)

• latency

• power consumption
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Methodology
Resource-aware Early Exit Injection and Downscaling

Given a model and constraint definition, we find 
the most uniform scaling factor that satisfies the 
target cost reduction ratio through a grid search 
for each complexity level
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Table 1: Split ratios and resulting local model 
statistics (#PARAMS, #FLOPS) for ResNet110 at each 
level.

• Early exits are injected to Nsd th layers.
• Each client k is assigned to a complexity level (lk) based on the 

available resources such that the cost of the subnetwork 
(cost(M_lk)) will not exceed the budget of the client (Bk).



Methodology
Split and Aggregate
Splitting along depth
• Early exit classifiers were injected to Nsd th layer

• Layers after the corresponding early exit are 
removed

Splitting along width
• Weight matrices at hidden layers are split with ratio sw

• The index function returns a Boolean matrix to access 
the upper-left submatrix (first Dsw elements along each 
dimension with size D)

• Can be thought as block-wise dropout

Overlapping parts of subnetworks are scaled by 
the number of contributing local clients during 
aggregation.
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Methodology
Optimization with Self-Distillation
Knowledge distillation is the method to transfer knowledge from a 
large (teacher) model to a smaller (student) model [5]

• Iterative training of a student network using the teacher network 
predictions as soft-labels (over an additional distillation dataset)

Early exits enable performing self-distillation through utilizing the 
final prediction as soft-label for earlier exit predictions. 
KL divergence among predictions is also minimized in 
the optimization objective during local training iterations:
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Cross-entropy loss at the 
ith exit of level-j model

KL-divergence between 
the ith and the last exit 
of level-j model

Since distillation is performed within the network, we don’t need any additional distillation dataset or 
perform distillation operations at the central server. Therefore, there is no additional 
communication/computation cost due to self-distillation neither in clients or central server.

Figure 6: Subnetwork structure. For the level j 
local model Mj, fi is the ith core subnetwork with 
weights wi,j

(f). Likewise, gi is the ith exit classifier 
subnetwork with weights wi,j

(g). ŷi,j is the output at 
the ith exit of the model at level j.



Related Work

[1] FedAvg
[6] HeteroFL
[7] FedDF
[8] FedProx
[9] SplitFed
[10] FedMD
[11] FL with Compression

Existing Approaches differ in the following 
eight aspects:

Applicability for
• Computation Constraints
• Storage Constraints
• Communication Constraints

Requirement of
• Additional Training on Shared Data
• Additional Training on Server / Clients
• Sharing intermediate layer output

Other Properties:
• Distillation for client-server integration
• Capable of Adaptive Inference
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Related Work
Qualitative Comparisons

Applicable Constraint Type NO requirement of

Method Computation
constraints

Storage
constraints

Communication
constraints

Additional
training on
shared data

Additional
training on

server/clients

Sharing
intermediate 
layer output

Distillation Adaptive
inference

FedAVG [1] × × × ✓ × ✓ × ×
HeteroFL [6] ✓ ✓ ✓ ✓ ✓ ✓ × ×
FedDF [7] ✓ ✓ ✓ × × ✓ ✓ ×
FedProx [8] ✓ × × ✓ ✓ ✓ × ×
SplitFed [9] ✓ ✓ × ✓ × × × ×
FedMD [10] ✓ ✓ ✓ × × ✓ ✓ ×
Compression [11] × × ✓ ✓ ✓ ✓ × ×
ScaleFL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Experiments
Datasets and Setup Details

Dataset Train size Test size Resolution # Classes

CIFAR-10 50K 10K 32 10

CIFAR-100 50K 10K 32 100

ImageNet 1.2M 150K 224 1000

SST-2 67K 872 - 2

AgNews 120K 7.6K - 4

System Topology
• 100 clients with 10% availability at 

each round
• Four complexity levels with target 

cost reduction ratios of 12.5%, 25%, 
50%, 100% in terms of #PARAMs

• Client level distribution is uniform 
(25% each level)

Data Heterogeneity
• Dirichlet distribution with varying 

concentration parameters to 
control nonIID data simulation 
(label distribution skew)
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Experiments
Model and Implementation Details

Baselines:
• FedAVG: level-1 subnetwork is trained 

using federated averaging algorithm
• Decoupled: one model for each 

complexity level is trained in a decoupled 
way

Existing Methods:
• HeteroFL: employs vertical model 

splitting along width [6]
• FedDF: uses ensemble distillation on 

central server over an additional dataset 
after each round [7]

Models:
• ResNet110 on CIFAR10/100 experiments
• MsdNet24 on CIFAR10/100 experiments
• EfficientNetB4 on ImageNet experiments
• BERT on SST2 and AgNews experiments (pr

etrained model is finetuned in 
federated setting)
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Experiments
Results – Image Classification
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Experiments
Results – Text Classification
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Improvements are consistently more significant for 
local model performances with a range of 1-6% 
accuracy increase.



Experiments
Results – Local Performance Analysis (CIFAR10/100)
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Performance improvements are 
greater at lower complexity levels, 
which shows the efficiency of 
submodels created with two-
dimensional model downscaling.

Figure 6: Local model performances 
(ResNet110)



Experiments
Results – Local Performance Analysis (SST-2/AgNews)
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For instance, level-2 model on 
AgNews has 6x faster inference 
and 0.25x of model size compared 
to global model while causing 
2.5% (vs. 3-4% for other 
ods) performance drop.

Figure 7: Local model performances 
(BERT)
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