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Overview

E' epochs Net epochs for a single model: E — E' - -
Method CIFAR-10 CIFAR-100
Step-2:
Train M models, each . . -
f: E f‘.lm[_,pw;a ERM+EMA (Pad+Crop+HFlip) 06.41 81.67
o ERM+EMA (AutoAugment) 97.50 84.20
Data D . ‘ - 1A 19
- S ERM+EMA (Cutout) 97.43 82.33
M dels t ~ B Q7 g 05
R models fo one ERM+EMA (Cutmix) )7.11 84.03
) Learning Subspaces 97.46 83.91
Data D i
ERM+EMA (Mixed Training-MT) 97.69 +0.19 85.57 +0.13
DART (Ours) 97.96 +0.06 86.46 +o0.12
Data DM
Algorithm VLCS PACS OfficcHome Terralnc DomainNet Avg
ERM 77.5+04 855+0.2 66.5 £ 0.3 46.1 £ 1.8 409 +£0.1 63.3
+ DART (Ours) 78.5+0.7 87.34+0.5 70.1 = 0.2 4874+08 4584+0.0 66.1
SWAD 79.1 4+ 0.1 88.1 0.1 70.6 £0.2 500£03 46.5+0.1 66.9
S ‘ . + DART (Ours) 80.3+0.2 88.9 + 0.1 71.9 + 0.1 51.3+£02 471+£00 679
tep-4: T times
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Generalization of Deep Neural Networks
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DART- Diversity Aggregate Repeat Training

<

E' epochs )

Net epochs for a single model: F — E'

Step-2: Diversify
Train M models, each

E-FE
for e epochs
Data D!
Step-3: Aggregate
- M models to one

Step-1: ERM training

L4 .7 da- _,’iu
N 5

Step-4: Repeat 7 times

Traversing to the basin of optimal solutions:
Mixed Training (MT) of a single model is done for E’
epochs

Diversify - Exploring the basin: Individual experts
are trained using different augmentations/
domains to improve diversity across models
Aggregate - Combining diverse experts: Weights of
all experts are averaged to obtain a single model
Repeat: Each expert is reinitialized with the
interpolated model, and this process is repeated
until convergence



Empirical Results

Improved performance in the In-Domain setting

Method CIFAR-10 CIFAR-100 ERM+EMA ERM+SWA  DART SAM+EMA DART+SAM+EMA

ERM+EMA (Pad+Crop+HFlip) 96.41 81.67 85.57 £0.13 85.44 +0.09 86.46 +0.12 87.05 +£o0.15 87.26 +0.02

ERM+EMA (AutoAugment) 97.50 84.20

ERM+EMA (Cutout) 97.43 §2.33

ERM+EMA (Cutmix) 97.11 84.05

Learning Subspaces 97.46 83.91 Stanford-CARS CUB-200 Imagenet-1K
ERM + EMA DART ERM+EMA DART ERM+EMA DART

ERM+EMA (Mixed Training-MT) 97.69 +£0.19 85.57 013 SA 38.11 00.42 78.55 7975 78,55 78.96

DART (Ours) 97.96 +006  86.46 o012 MA 90.88 91.95 81.72 82.83 79.06 79.20

SOTA performance in the Domain Generalization (DG) setting

Algorithm VLCS PACS OfficecHome Terralnc DomainNet Avg

ERM 775404 855+£02 665+£03 46118 409+£0.1 633

+ DART (Ours) 785+£0.7 873405 70102 487+£08 458+£0.0 66.1

SWAD 79.1+£0.1 88.1+0.1 706+0.2 500+03 465+0.1 669

+ DART (Ours) 80.3+02 889+0.1 71.9+0.1 51.3£02 47100 679




Proposed Approach: DART



Diverse Training for Improved Generalization
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Image source: Shah et al., The Pitfalls of Simplicity Bias in Neural Networks

Data Augmentations

Original DeepAugment
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Image source: Hendrycks et al., The Many Faces of Robustness:
A Critical Analysis of Out-of-Distribution Generalization

Simplicity Bias —tendency to rely on simpler features
that are often spurious correlations to the labels,
when compared to the harder robust features

Simplicity Bias is one of the reasons for the sensitivity
of Deep Networks to distribution shifts

Training on data from diverse domains
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Ensemble of diverse experts

* Training a model using augmented data specializes the model to the same distribution

* Mixed Training: Generalization of the model improves when diverse augmentations are used in
a single training minibatch, but performance is limited by the capacity of the model

* Using an ensemble of diverse models trained on different augmentations results in improved
generalization, but with higher inference time

Test Augmentation

Train Augmentation No Aug. Cutout Cutmix  AutoAugment
Pad+Crop+HFlip (PC) 78.51  67.04 56.52 58.33
Cutout (CO) 77.99  74.58 56.12 58.47
Cutmix (CM) 80.54  74.05 77.35 61.23
AutoAugment (AA) 79.18  71.26 60.97 73.91
Mixed-Training (MT) 81.43 77.31 73.20 74.73

Ensemble (CM+CO+AA) 83.61 79.19 73.19 73.90




DART- Diversity Aggregate Repeat Training

E' epochs } Net epochs for a single model: E — E'

Step-2: Diversify
Train M models, each

E-F'
for or epochs
Data D!
Step-3: Aggregate
- M models to one

Step-1: ERM training

{4 -,- Data D? -" '
N

Data G

Step-4: Repeat 7 times

Traversing to the basin of optimal solutions:
Mixed Training (MT) of a single model is done for E’
epochs

Diversify - Exploring the basin: Individual experts
are trained using different augmentations/
domains to improve diversity across models
Aggregate - Combining diverse experts: Weights of
all experts are averaged to obtain a single model
Repeat: Each expert is reinitialized with the
interpolated model, and this process is repeated
until convergence



Optimization trajectory

Optimization trajectory in Loss Landscape  The models explore more in the initial phase
=
<+ Auto

of training, and lesser thereafter due to the

cosine learning rate schedule

| -+ Plain Interpolation
| —e— cutout (Ours)
—a— Cutmix (Ours)
—e— Auto (Ours)

| —e— DART (Ours)

10 * Initial exploration increases the diversity of

models improving robustness to spurious
features

* Repeated aggregation ensures that the
models remain close to each other

Principal Component 2

* Smaller steps towards the end help in

-10

-10
Principal Component 1

K retaining the flatter optima obtained after

Aggregation



Theoretical and Empirical results



Impact of Weight Averaging

* Weights learned by a single layer neural network are a combination of the feature and noisy patches
present in images

cut
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* Weight averaging can improve learning and achieve robustness to spurious features as:
o Use of diverse augmentations helps in learning less frequent (hard) feature patches
o Weight averaging helps in reducing the variance of noise

ZZU’“J+ y‘ Sj y(k) (k)

e — me= 1k>Keut,

Theoretical setup from: Ruoqi Shen, Sebastian Bubeck and Suriya Gunasekar, Data Augmentations as Feature Manipulation (ICML-2022)



Theoretical Results

Proposition 1 The convergence time for learning any fea-
ture patch v; Vi € |1, K| in at least one channel ¢ € C of
the weight averaged model fy using the augmentations de-

fined in Eq.5, is given by O (%), iff/—qa < %, m =K.

Proposition 2 [f the noise patches learned by each f‘f’ are

i.i.d. Gaussian random variables ~ N (0, %Qfd) then with
high probability, convergence time of learning a noisy patch
€9 in at least one channels ¢ € [1,C] of the weight aver-

aged model fy is given by O ( ??Jq ) if d > n?.

q
99

On weight averaging, the convergence
time for learning less frequent feature

patches decreases. Thus, the learning
of hard features becomes easier.

On weight averaging, the convergence
time for learning noisy/ spurious

features increases by O(m), where m is
the number of expert models.




Theoretical Results

Proposition 3 If the noise learned by each f§ are i.i.d.
Gaussian random variables ~ N (0, ";Id), and model

weight averaging is performed at epoch T, the convergence
time of learning a noisy patch €9) in at least one chan-
nels ¢ € [1,C| of the weight averaged model fy is given

(a—2) g(a—2)/ .
by T + O (”m Sl 2) if d > n?.

Intermediate interpolations increase
the convergence time for learning

spurious features when compared to
weight averaging only during inference




Empirical Results: In Domain Generalization

Method CIFAR-10 CIFAR-100
ERM+EMA (Pad+Crop+HFlip) 96.41 81.67
ERM+EMA (AutoAugment) 97.50 84.20
ERM+EMA (Cutout) 97.43 82.33
ERM+EMA (Cutmix) 97.11 84.05
Learning Subspaces 97.46 83.91
ERM+EMA (Mixed Training-MT) 97.69 +0.19 85.57 £0.13
DART (Ours) 97.96 + 0.06 86.46 +o.12

Model Architecture: WideResNet-28-10



Using same augmentations across models

Method Pad+Crop+HFlip AutoAug. Cutout Cutmix Mixed-Train.
ERM 81.48 83.93  82.01 83.02 85.54
ERM + EMA 81.67 84.20  82.33 84.05 85.57

DART (Ours) 82.31 85.02 84.15 84.72 86.13




Empirical Results: In Domain Generalization

 DART can also be combined with SAM to obtain better results (CIFAR-100, WRN-34-10)

ERM+EMA ERM+SWA DART SAM+EMA DART+SAM+EMA
85.57 013 85.44 +009 86.46 012 87.05 +0.15 87.26 +0.02

* DART obtains improved results on ImageNet and fine-grained datasets

Stanford-CARS CUB-200 Imagenet-1K
ERM + EMA DART ERM+EMA DART ERM+EMA DART
SA 88.11 90.42 78.55 79.75 78.55 78.96
MA 90.88 91.95 81.72 82.83 79.06 79.20

SA: Single Augmentation, MA: Mixed Augmentations



Empirical Results: Domain Generalization

Algorithm VLCS PACS OfficcHome Terralncognita DomainNet Avg
ERM 77.5+04 855+02 665403 46.1 + 1.8 409+0.1 633
IRM 785+05 835+08 643422 47.6 + 0.8 33.9+28 61.6
GroupDRO 76.7+06 844+08 66.04+0.7 432 + 1.1 333+0.2  60.7
Mixup 774 +06 846+06 68.14+03 4794+ 0.8 39.2+0.1 634
MLDG 77.24+04 849+10 66.84+0.6 477+ 0.9 41.2+0.1 63.6
CORAL 788 +£06 862+03 687403 47.6 + 1.0 4154+ 0.1 645
MMD 71.5+09 846=£05 663 +0.1 4224+ 1.6 23.44+95 588
DANN 786 £04 836+04 659406 46.7 + 0.5 383+0.1 62.6
CDANN 771.5+0.1 826+£09 658+ 1.3 458 + 1.6 383+03 62.0
MTL 772+£04 846+05 664405 45.6 + 1.2 406 £ 0.1 629
SagNet 77.8£05 863+0.2 68.140.1 48.6 + 1.0 403+ 0.1 64.2
ARM 77.6 £03 851+04 648403 45.54+0.3 355+ 0.2  61.7
VREX 783+02 849+£06 66.44+0.6 46.4 + 0.6 33629 619
RSC 77.1+£05 852+£09 655409 46.6 + 1.0 38.9+£05 627
SWAD 79.1+0.1 88.1£0.1 70.64+0.2 50.0 £0.3 465+ 0.1 66.9
DART w/o SWAD 78.5+0.7 873405 70.1 £0.2 48.7 + 0.8 45.8 66.1
DART w/SWAD  80.3+0.2 889+0.1 71.9+0.1 51.34+0.2 47.2 67.9




Combining DART with other DG methods

* DART can be integrated with several base domain generalization approaches — both with
and without SWAD, to obtain substantial gains across the respective baselines.

Algorithm  Vanilla DART (w/o SWAD) SWAD DART (+ SWAD)

ERM 66.5 70.31 70.60 72.28
ARM 64.8 69.24 69.75 71.31
SAM 67.4 70.39 70.26 71.55
Cutmix 67.3 70.07 71.08 71.49
Mixup 68.1 71.14 71.15 72.38
DANN 65.9 70.32 69.46 70.85
CDANN 65.8 70.75 69.70 71.69
SagNet 68.1 70.19 70.84 71.96
MIRO 70.5 72.54 72.40 72.71

MIRO (CLIP)  83.3 86.14 84.80 87.37




Conclusion



Conclusion

* We propose the Mixed Training (MT) benchmark which uses a combination of diverse augmentations
during training in a single minibatch, and obtains improved results in an in-domain generalization setting

* We propose DART — Diversify Aggregate Repeat Training, an algorithm to improve generalization of
models by firstly training diverse models, and further aggerating their weights throughout training.
* Theoretical results:
* Lower convergence time for learning hard features (learning of diverse features)
* Higher convergence time for learning noisy features by incorporating intermediate weight averaging
(robustness to spurious features)
* Empirical results:
* Improved performance in the In-Domain setting
 SOTA performance in the Domain Generalization (DG) setting

 Adaptable with different Domain Generalization methods
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