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* Guarantees statistical independence.

We introduce a novel training procedure that:

Addresses prior sampling methods shortcomings.
Bridges the performance gap between sampling
and non sampling methods.

Maintains sampling methods low cost and

simplicity.
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Sampling Methods Overview

e Simple Methods; few lines of code

e Introduce no additional hyperpararneters.

e Theyare missing from recent work benchmarks

Ensure Pp(Y|B) = Pp(Y)
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Sampling methods shortcomings
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Overview of the Bias Mimicking

o We want to guarantee Pp(Y[B) = Pp(Y)

e Bias Mimicking: Given class “c”:
o Ensure that Pp(B|Y = ¢)

is “mimicked” in each other class

e Turns out: this guarantees statistical independence!
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Training with BM E—
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Training with BM

e Dedicate a multi class head for each
distribution.

o Issue: Too many additional
parameters.
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Training with BM

e Dedicate a binary head

for each distribution.

e The binary prediction
heads combined are
equivalent to one multi
class prediction head.

Hair

Black
Hair

Blonde

Red
Hair

B Female
0 Male

Feature
Encoder

— Bias-Mimicking —

JUNE 18-22, 2023

CVPR

i

VANCOUVER, CANADA

o 1 Node Binary
— L L — Binarize — L Prediction head

Blonde Black Red Blonde Non-Blonde
Hair  Hair  Hair Hair Hair

1 Node Binary
‘ — Binarize — ‘ Prediction head

Blonde Black Red
Hair  Hair  Hair

—

Black  Non-Black
Hair Hair

el 1 Node Binary
- - - . a1 g . . Prediction head
Blonde Black Red Red Non-Red
Hair Hair

Hair  Hair  Hair



BOSTON MCthOd JUNE 18-22, 2023 ‘

CVPRe=E

A = VAR
VANCOUVER, CANADA

UNIVERSITY
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How to Bias Mimick?
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How to Bias Mimick?

e We constrain the solution space such that
the solution retains the most number of
samples.

e We obtain the set of solutions using a
linear program.

¢: preserved class
¢ mimicked class

s: bias
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Metrics
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Compute accuracy per group.
[ ]

Unbiased Accuracy (UA): Take the mean of accuracies over subgroups. [2]

Bias Conflict (BC): Take the mean accuracies of the under-represented subgroups only. [2]
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Non-Sampling Methods Sampling Methods
Vanilla Adv G-DRO DI BC+BB (O] Uw us BM

Utk-Face | VA | 728 | 702 742 | 755 | 789 | 766 | 788 | 782 | 797
e Sampling methods show strong | Age
BC
performance on some 471 | 441 759 | 58.8 714 | 581 | 772 | 698 | 791
basclines. Utk-Face | UA | 884 | 86.1 90.8 | 907 | 914 | 913 | 897 | 90.8 | 90.8
Race
BC | 808 | 77.1 902 | 909 | 90.6 | 90.0 | 892 | 893 | 907
® They lag behind on
other benchmarks. CelebA UA | 824 82.4 90.4 90.9 90.4 88.1 | 916 91.1 90.8
Blonde

BC 66.3 66.3 89.4 86.1 86.5 80.1 883 885 87.1

e  Bias Mimicking shows
consistent good performance
unlike other sampling methods. BC | 828 | 720 | 880 | 9.9 | 895 | 825 | 80.0 | 837 | 9LI

CIFAR-S UA 88.7 81.8 89.1 92.1 90.9 87.8 86.5 88.2 91.6

Average UA 83.0 80.1 86.1 87.3 87.9 85.9 86.6 87.0 88.2

BC 69.2 64.8 85.8 81.9 84.5 77.6 83.6 82.8 87.0
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Sensitivity Analysis

How sensitive is the model to the mimicking condition?

We vary the amount of bias mimicked between a percentage where:

o  0%: distribution remains the same.

0 100%: Complete bias mimicking.
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® We showed that simple sampling methods can be competitive on some benchmarks
when compared to non sampling state-of-the-art approaches.

e We introduced a novel resampling method: Bias Mimicking that bridges the
performance gap between sampling and nonsampling methods.

® We conducted an extensive empirical analysis of Bias Mimicking that details the

method's sensitivity to the Mimicking condition. Refer to the paper for more details.
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Link to code on github




