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Highlights

» We identify that the major challenge in fully test-time adaptation lies in effective
unsupervised learning of early layer representations, and explore neurobiology-inspired soft
Hebbian learning for effective early layer representation learning and fully test-time
adaptation.

» We develop a new neuro-modulated Hebbian learning method which combines
unsupervised feed-forward Hebbian learning of early layer representation with a learned
neuro-modulator to capture feedback from external responses. We analyze the optimal
property of the proposed NHL algorithm based on free-energy principles.

» We evaluate our proposed NHL method on benchmark datasets for fully test-time
adaptation, demonstrating its significant performance improvement over existing methods.
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Problem Definition

»  The performance of DNNs tends to degrade when there is data shift between the
training data in the source domain and the testing data in the target domain.

»  Fully test-time adaptation, only needs access to live streams of test samples, which
can dynamically adapt the source model on the fly during the testing process.
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Main Idea

» In neural network models, the early layers of the network tend to respond to corners, edges, or colors. In
contrast, deeper layers respond to more class-specific features. In the corruption test-time adaptation
scenario, the class-specific features are always the same because the testing datasets are the corruption of
the training domain. However, the early layers of models can be failed due to corruption.

»  We first incorporate a soft decision rule into the feed-forward Hebbian learning to improve its competitive
learning. Second, we learn a neuro-modulator to capture feedback from external responses, which controls
which type of feature is consolidated and further processed to minimize the predictive error. During inference,
the source model is adapted by the proposed NHL rule for each mini-batch of testing samples.
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Method

» Our proposed neuro-modulated Hebbian learning

consists of two major components: the feed-forward
soft Hebbian learning layer and the neuro-modulator.

The soft Hebbian learning layer aims to learn useful
early layer representations without supervision based
on local synaptic plasticity and soft competitive
learning rules. It is able to generate early
representations which are as good as those learned by
end-to-end supervised training with labeled samples
and back-propagation.

During our experiments, we find that this soft Hebbian
learning layer can significantly improve the

performance of the network model in the target domain.
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Method

» To approximate the true distribution p.(y|X;) by a posterior approximation ¢:(y): = gs..(y|X2),
one can consider the similarity between these two distributions measured by the following
Kullback-Leibler (KL) divergence

_ 5 q2(y)
KL{g2()Ipe (v X2)] = / ta(v) log 2 By

» this minimization of KL-divergence can be converted to minimization of the free-energy F

defined as:
Q2(ZU)
F = lo d
fq_rg(y) gpt(Xt}y) Y
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> The problem of minimizing the KL-divergence for ¢:(¥) and its true posterior p:(¥|X:) can be
formulated based on the free-energy principle:

KL{g2(y)||pe(y| X¢)| = F +log Py (X4)

where Pi(X,): Z/qz(y)pt(Xt)dyzpt(Xt) is the normalization term. Note that this term does not depend
on ¢2(¥). Theréfore, minimizing the KL-divergence is reduced to minimizing F. To this end, given a

batch B of data in the target domain, we rewrite (use p.(y,B) = p.(Bly)p.(y)) and decompose the free-
energy Fy for current batch into the following two items:

Fs = KL{ga(y|B)|Ips ()] — f 42(y B) log p:(Bly)dy

Yy
» The first term is already minimized through soft Hebbian learning, while minimizing the second
term requires the likelihood distribution p.(Bly ). Since p.(Bly) = p.(y|B)p.(B)/p.(y)and ¢(y|B) is

considered as an approximation of p.(y|B), we minimize the entropy of y given the current batch
B in a discrete way as:

argmin H(y|B) = arg maXZqz(y|B) log g2 (y|B)
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Experimental Results

» Top-1 Classification Error (%) for each corruption in CIFAR-10C at the highest severity
(Level 5). Backbones: ResNet-26 (top), WRN-28-10 (middle), and WRN-40-2 (bottom).

Methods ‘gaus shot impul defcs gls mtn zm snw  frst fg brt cnt  els pxX  jpg ‘Avg.

Source 67.7 63.1 699 553 56.6 422 50.1 316 463 391 17.1 746 342 579 31.7 | 49.2
TTT [64] 456 41.8 500 21.8 46.1 23.0 239 299 300 251 122 239 226 472 272 | 314
NORM [60] | 44.6 4377 49.1 294 452 262 269 258 279 238 183 343 293 37.0 325 | 329
TENT [66] 394 388 479 199 450 232 20.6 28.1 32.1 245 16.1 26.7 324 30.6 355 | 30.7
DUA [+1] 349 326 422 18.7 40.2 240 184 239 240 209 123 27.1 272 262 287 | 268
Ours 332 30.6 382 17.7 412 208 174 240 272 204 135 21.1 284 23.7 289 | 25.8

Source 723 657 729 469 543 348 420 251 413 260 93 46.7 266 3585 303 | 435
NORM [60] | 28.1  26.1 363 128 353 142 121 173 174 153 84 126 238 197 273 | 204
TENT [66] 248 235 330 120 31.8 137 108 159 162 137 79 121 220 173 242 | 186
DUA [-+1] 274 246 353 13.1 349 146 11.6 168 175 13.1 7.6 14.1 227 193 262 | 199
Ours 236 214 309 11.0 311 13.0 109 142 155 130 80 103 218 16.7 224 | 17.6

Source 28.8 229 262 95 206 106 93 142 153 175 7.6 209 147 413 147 | 183
NORM [60] | 18.7 164 223 9.1 221 105 97 130 132 154 78 120 164 151 17.6 | 14.6
TENT [66] 157 132 188 7.9 18.1 9.0 8.0 104 108 124 6.7 100 140 114 148 | 121
DUA [+1] 154 134 173 8.0 18.0 9.1 7.7 108 108 12,1 6.6 109 13.6 13.0 143 | 12.1
Ours 134 123 15.0 75 160 87 77 91 96 101 64 82 133 93 133 | 10.7
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»  Top-1 Classification Error (%) for each corruption in CIFAR-100C at the highest severity (Level 5).

Methods | gaus shot 1mpul defcs gls mtn zm snw  frst fg brt cnt els px jpe | Avg.
Source 65.7 60.1 59.1 320 510 336 324 414 452 514 316 555 403 597 424 | 46.7
NORM [60] | 447 442 474 324 464 329 330 390 384 453 302 366 406 37.2 442 | 395
TENT [66] | 40.3 399 418 298 423 31.0 30.0 345 352 395 280 339 384 334 414 | 36.0
DUA [+41] 422 409 410 305 448 322 299 389 372 436 295 392 390 353 412 | 376
Ours 384 371 362 284 410 293 297 322 331 36.1 264 309 362 308 383 336

» Top-1 Classification Error (%) for each corruption in ImageNet-C at the highest severity (Level 5).

Methods | gaus shot 1i1mpul defcs gls mtn zm snw  frst fg brt cnt els px jpg | Avg.
Source 980 976 992 933 890 902 823 879 920 995 759 995 653 603 540 | 857
TTT [64] 755 768 819 896 828 7T9.1 713 836 81.0 983 590 99.0 547 532 49.6 | 75.7
NORM [60] | 60.2 607 598 76,6 687 674 642 646 662 747 570 888 558 53.0 523 | 64.7
TENT [00] | 594 596 587 725 66.1 649 621 622 649 686 552 979 545 5211 517 | 62.7
DUA [41] 719 726 724 902 808 831 747 764 779 873 626 993 608 584 526 | 747
Ours 56.7 56.7 56.6 733 657 61.0 620 58.6 633 639 531 775 540 52.0 515 604
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Experimental Results

» Density plots of adapted features
distribution on CIFAR-10-C (Gaussian).
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» The mean error on CIFAR-10C (Gaussian)
in different adaptation stages.
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Error (%)

» Top-1 Classification Error (%) for test-time
adaptation on digit recognition.

Methods MNIST MNIST-M USPS | Avg.
NORM* [60] 39.6 52.1 414 | 444
TENT™* [66] 45.8 56.2 48.3 | 50.1
Ours 31.2 47.9 32.6 | 37.2
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Conclusion

» We identify that the major challenge in fully test-time adaptation lies in effective unsupervised
learning of early layer representations, and explore neurobiology-inspired soft Hebbian learning
for effective early layer representation learning and fully test-time adaptation.

» We develop a new neuro-modulated Hebbian learning method which combines unsupervised
feed-forward Hebbian learning of early layer representation with a learned neuro-modulator to
capture feedback from external responses.

» We analyze the optimal property of the proposed NHL algorithm based on free-energy
principles.

» We evaluate our proposed NHL method on benchmark datasets for fully test-time adaptation,
demonstrating its significant performance improvement over existing methods.
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