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Incremental learning

B The ability to continuously learn new knowledge while keeping the
memory of the old knowledge.
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Environment Input

Bilevel Memory model with Knowledge Projection
(BMKP)

Learn Inference

' Working Memory

B \Working memory responsible for new knowledge

P learning, to ensure high plasticity.
Project Komwledze |/t m Long-term memory in charge of storing learned
Representations knowledge, to guarantee high stability.
A1) A2 = 4 B Knowledge projection, project model knowledge of
S working memory into the compact representation,
{ , and then stored into long-term memory, to achieve
Bilevel Memory Model high memory efficiency.

with Knowledge Projection
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Knowledge: the ability to transfer a given input to the expected output.
Parameter Knowledge Space (PKS)
B The Space where the knowledge Is represented as the trained parameters.

Zb = Wt X!

Core Knowledge Space (CKS)

B in which the knowledge can be organized in a quite compact form without loss of
performance.
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B Following the principle of minimum energy consumption, BMKP encourages the
working memory to learn new knowledge with respect to the pattern basis B:

L Trace ((Wl — WZ)T(WZ — Wl))

Lreg(W = — =
Jow =iy e =Wy

Where W' = B!B'' W' denotes the orthogonal projection of W' into CKS.
B The overall loss for task t learning is:

Wt < arg min Ltask: (W, Dt) + /\Lreg(W)
4%
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B We first extend CKS with new pattern basis:
Uiziv!' «— svD(z{- B'B' Z})
B'«— B Ul
B Then project knowledge into CKS:

AL« Bt W
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B The knowledge projection may not be perfect since some minor basis are
dropped through threshold selection, We introduce a recall mechanism:

Ay «— argmin Lygsi(BAg, Dy)
Ay
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Methods Venue CIFAR-10 CIFAR-100 Tiny-ImageNet Average
Joint* - 98.07 91.18 82.01 90.42
LwF [16] TPAMI2017 91.91+40.7 63.78+4.3 58.61+1.8 71.43
SI [38] ICML2017 76.154+2.6 62.214+2.6 6091+1.3 66.42
DGR [2Y] NIPS2017 91.06+74 44.5342.5 - -
GEM [17] NIPS2017 85.1442.1 62.80+2.7 44.66+1.7 64.20
oEWC [27] ICML2018 64.17+4.8 38.40+1.9 31.91+0.9 44.83
LwM [Y] CVPR2019 78.01+0.8 68.88+0.9 45.57+0.2 64.15
DI [35] CVPR2020 94.46+0.6 68.43+2.1 66.124+0.9 76.34
DER [ 7] NIPS2020 93.134+0.3 73.261+1.3 5122415 72.54
DER++ [ 1] NIPS2020 93.71+04 74.86+1.1 53.00+0.4 73.86
DER++' [3] NIPS2020 93.88+0.5 - 51.91:1-0.7 -
HAL [4] AAAI2021 82.34+1.5 43.914+3.6 - -
PASS [39] CVPR2021 86.07+0.2 77.30+0.4 62.874+0.4 75.41
GPM [26] ICLR2021 86.58+0.9 70.93+0.9 59.8440.2 72.45
GPM' [26] ICLR2021 - 72.48 - -
Adam-NSCL [37] CVPR2021 87.23+04 65.69+0.2 59.98+0.7 70.97
CLS-ER [’] ICLR2022 93.53+0.3 72.11+0.5 57.36+0.7 74.33
WSN [12] ICML2022 92.99+04 81.10+0.7 67.50+0.7 80.53
CF-ILT [23] ICLR2022 93.12 - 67.42 -
FAS [22] ICLR2022 90.89+1.3 70.89+0.6 60.104+0.2 73.96
BMKEP (ours) - 94.49+0.2 79.62+0.8 70.36+0.2 81.49
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Methods Split CIFAR-10  Split CIFAR-100 Split Tiny-ImageNet
BMKP w/o basis updating 79.4442.7 43.00+1.9 28.27+1.1
BMKP w/o retraining 94.0740.3 78.7340.6 68.124+0.8
BMKP 94.49+0.2 79.62+0.8 70.36+0.2
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1. Inspired by the multi-level human memory system, we propose a
bilevel-memory framework for incremental learning, which benefits
from both high plasticity and stability.

2. We propose a knowledge projection process to project knowledge
from PKS into compact representation in CKS, which not only
Improves memory utilization efficiency but also enables forward
knowledge transfer for incremental learning.

3. We design aregularizer to encourage the working memory to reuse
previously learned knowledge, which enhances both the memory
efficiency and the performance of BMKP.

4. The experimental results show that BMKP achieves state-of-the-art
performance in most cases with lower memory usage.
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The code Is available at

https://github.com/SunWenJu123/BMKP
Contact:

SunWenJu@bjtu.edu.cn




