MAGVLT:

Masked Generative Vision-and-Language Transformer

Sungwoong Kim^{1*}, Daejin Jo^{2*}, Donghoon Lee^{2*}, Jongmin Kim^{2*}

THU-PM-261

² kakao brain

Multi-Modal Generative Modeling

Can one model generate multi-modal data?

Synergy

sungwoong kin

Contributions

- MAGVLT: Unified Generative Vision-and-Language (VL) Model based on Masked Generative Transformer.
- Robust training on image-text pairs: cross-modal mask prediction + step-unrolled mask prediction + selective prediction on the mixed context.
- Competitive performances of MAGVLT on both of zero-shot image-to-text (I2T) and text-to-image (T2I) generation tasks for the first time.

MAGVLT: Generative Vision-and-Language Model

One universal IT2IT (Image+Text to Image+Text) model can do ...

T2I -> Text-guided image generation

-> Image captioning

-> Image transfer, inpainting

T2T -> Translation, QA, text infilling

-> Text-guided image editing

IT2T -> Visual QA

T2IT -> Visual story generation

ITITIT...2IT -> In-context vision+language generation

MAGVLT: Generative Vision-and-Language Model

IT2IT

MAGVLT

Auto-Regressive (AR) Generative Modeling

One-time sequential generation
Unidirectional transformer

Masked (Non-AR)
Generative Modeling

Multiple-refined parallel generation

Bidirectional transformer

Better and Faster generation

Inference (Iterative Refinement)

Generation: Iterative refinement (denoising)

Train: Variable mask ratio, simulating one of refining (denoising) steps

- Similar to Discrete Diffusion

** I2T Generation: Target Length Prediction on <BOT> trained by CE loss $\mathcal{L}_{ ext{TL}}(N_T, \hat{N}_T)$

$$\mathcal{L}_{12T} = -\mathbb{E}_{(X,Y)\in\mathcal{D}} \left[\sum_{\forall j \in [1,N_T], m_j^T = 1} \log p(y_j | Y_{\bar{M}_T}, X) \right], (1)$$

$$\mathcal{L}_{T2I} = - \underset{(X,Y) \in \mathcal{D}}{\mathbb{E}} \left[\sum_{\forall i \in [1,N_I], m_i^I = 1} \log p(x_i | X_{\bar{M}_I}, Y) \right], (2)$$

$$\mathcal{L}_{\text{IT2IT}} = - \underset{(X,Y) \in \mathcal{D}}{\mathbb{E}} \left[\sum_{\forall j \in [1,N_T], m_j^T = 1} \log p(y_j | Y_{\bar{M}_T}, X_{\bar{M}_I}) \right]$$

$$+ \sum_{\forall i \in [1, N_I], m_i^I = 1} \log p(x_i | X_{\bar{M}_I}, Y_{\bar{M}_T}) \right], (3)$$

Step-Unrolled Mask Prediction (UnrollMask)

Ex. I2T Step-unrolled Mask prediction Target mask prediction <bables> <with> <with> <with> <a> <a> <a>
birthdav>
birthdav> ◀ →

dirthday> <cake> ➤ <with> <on> <the> <one> <the> < <candle> **MAGVLT** <MASK> <MASK> <MASK> <MASK> <with> <with> <a> <a>

day> <MASK> <MASK> <MASK> Image <MASK> <on> Encoder <the> <the> <MASK>

SUNDAE* tries to reduce the gap between a corruption on the target tokens at training and a corruption on the partially predicted tokens at testing.

Motivated by this, MAGVLT remasks the one-step predicted sequence then predicts the re-masked tokens.

$$\mathcal{L}_{\text{UM,I2T}} = \mathbb{E}_{(X,Y)\in\mathcal{D}} \left[\sum_{\forall j \in [1,N_T], m_j^{T(+1)} = 1} \log p(y_j | \hat{Y}_{\bar{M}_T^{(+1)}}^{(+1)}, X) \right], (4)$$

 $\hat{Y}_{\bar{M}_{T}^{(+1)}}^{(+1)}$: re-masked one-step unrolled prediction of $Y_{\bar{M}_{T}}$

Selective Prediction on Mixed Context (MixSel)

Ex. within-modal bias

To reduce this bias and overlooking the cross-modal context, **two different input contexts are mixed in a half-and-half** concatenated manner, and **one of them is randomly selected** to be the target context in generation with a prepended special token to inform the selected context.

$$\mathcal{L}_{\text{MS, I2T}} = - \underset{(X,Y) \in \mathcal{D}}{\mathbb{E}} \left[\sum_{\forall j \in [1,N_T], m_j^T = 1} \log p(y_j^{\ell} | \hat{Y}_{\bar{M}_T}^{\ell}, \phi(X^1, X^2)) \right]$$

 ϕ : mixture function $\ell \in \{1, 2\}$: the selected context

Multitask Pretraining

$$\mathcal{L}_{\tau} = \mathcal{L}_{\text{mask},\tau} + \lambda_{\text{TL}} \mathcal{L}_{\text{TL},\tau} + \lambda_{\text{UM}} \mathcal{L}_{\text{UM},\tau} + \lambda_{\text{MS}} \mathcal{L}_{\text{MS},\tau}$$

$$\tau \in \{\text{I2T, T2I, IT2IT}\}, \lambda_{\text{TL}} = 0.01, \lambda_{\text{UM}} = 1.0, \lambda_{\text{MS}} = 0.5$$

A task $\tau \in \{I2T, T2I, IT2IT\}$ is sampled from the predefined p_{τ} for each iteration (batch-wise).

- Model

- 447M parameters in total including VQ-GAN

	ARG/MAGVLT
Params	371M
Layers	24
Embed Dim	1024
Heads	8

- VQ-GAN converts a 256x256 image into 16x16 tokens with 16,384 codebook size.
- BPE tokenizer with 49,408 vocab size converts a sentence to a text token sequence (max length: 64).

- Pretraining

- CC3M + CC12M + SBU + VG: total 17M image-text pairs
- 40K updates with a batchsize of 4,096 from scratch w/ only image+text pairs

- Evaluation

- Zero-shot T2I on MS-COCO
- Zero-shot I2T on MS-COCO and NoCaps

- Sampling

- # of refinement steps: 10 for image generation, 12 for text generation
- Clip reranking

- Image Generation

Model	FID (↓)	IS (†)	Speed
AR based			
CM3-Medium (2.7B) [1]	36.78	-	-
DALL-E (12B) [46]	27.5	17.9	-
CogView (4B) [16]	27.1	18.2	-
CogView2 (6B) [17]	24.0	22.4	-
Parti-350M (350M) [67]	14.10	-	-
Make-A-Scene (4B) [20]	11.84	-	-
ARGVLT (T2I only) (447M)	21.80	19.27	$1.00 \times$
Non-AR based			
GLIDE (3.5B) [40]	12.24	-	-
DALL-E-2 (6.5B) [45]	10.39	-	-
Imagen (4.9B) [48]	7.27	-	-
ERNIE-ViLG 2.0 (24B) [19]	6.75	-	-
MAGVLT (T2I only) (447M)	10.74	23.94	$8.12 \times$
Available for both T2I & I2T			
UPGen (307M) [4]	65.25	-	-
L-Verse (500M) [32]	37.2	-	-
ARGVLT (447M)	16.93	22.50	$1.00 \times$
MAGVLT (447M)	12.08	22.75	$8.12 \times$

Table 1. Zero-shot T2I results on MS-COCO validation set. Here, we compute FID and IS on a subset of 30,000 captions sampled from COCO validation.

- Text Generation

Model	B-4	M	С	S	Speed
with external language model					
ZeroCap (345M) [58]	2.6	11.5	14.6	5.5	-
MAGIC (1.5B) [56]	12.9	17.4	49.3	11.3	-
VLKD _{ViT-B/16} (406M) [14]	16.7	19.7	58.3	13.4	-
Flamingo-3B (3B) [3]	-	-	73.0	-	-
without external language mo	del				
SimVLM _{huge} (632M) [64]	11.2	14.7	32.2	8.5	-
ARGVLT (I2T only) (447M)	11.4	15.1	47.4	11.4	$1.00 \times$
ARGVLT (447M)	10.9	14.9	45.5	11.2	$1.00 \times$
MAGVLT (I2T only) (447M)	12.9	17.1	53.5	12.9	$1.56 \times$
MAGVLT (447M)	14.6	19.0	60.4	14.3	$1.56 \times$

Table 3. Zero-shot I2T results on MS-COCO Karpathy test.

ARGVLT

A hairy brown cow laying on top of a field.

GT

A cat behind flowers in a vase, small pumpkins, a wine bottle and a glass of wine.

A brown and white cow.

A white and black cat.

A sepia toned A woman with photo of a a teddy baby snuggling bear. with a giant

MAGVLT

A brown and white cow laying in the grass.

A cat with a bottle of wine glasses, and a glass vase with some flowers in the background.

The baby is sitting on on the floor and holding the arm of the bear.

- Ablations

Task sample weights	CIDEr (†)	FID (\dagger)
T2I:I2T:IT2IT		
1:0:0 (T2I only)	9 F. (9)	10.74
0:1:0 (I2T only)	53.5	-
0:0:1 (IT2IT only)	55.3	12.06
8:2:0 (T2I & I2T)	59.7	13.09
2:1:1	61.7	15.17
6:1:1	60.7	12.65
8:1:1*	60.4	12.08
10:1:1	59.2	12.07

Table 6. Variants of MAGVLT.

Model	CIDEr (†)	FID (↓)
MAGVLT (T2I only)	-	10.74
w/o MixSel	-	10.97
w/o UnrollMask and MixSel	-	11.72
MAGVLT (I2T only)	53.5	-
w/o MixSel	51.3	-
w/o UnrollMask and MixSel	48.0	-
MAGVLT	60.4	12.08
w/o MixSel	58.9	12.07
w/o UnrollMask	56.5	13.26
w/o UnrollMask and MixSel	53.8	14.12

Table 7. Effectiveness of additional training tasks.

Model Scaling

Parameter	Model		
	ARG/MAGVLT	ARG/MAGVLT _{Large}	
Params	371M	840M	
Layers	24	36	
Embed Dim	1024	1280	
Heads	8	10	

 -∧ı	
 <i>- 1</i>	

Model	FID (↓)	IS (†)	Speed
ARGVLT	16.93	22.50	1.00×
ARGVLT _{Large}	13.01	23.75	$0.51 \times$
MAGVLT	12.08	22.75	8.12×
MAGVLT _{Large}	10.14	25.15	$6.97 \times$

Table 9. Zero-shot T2I results on MS-COCO validation.

	I2T	
Model	CIDEr	SPICE
MS-COCO		
ARGVLT	45.5	11.2
ARGVLT _{Large}	43.6	11.2
MAGVLT	60.4	14.3
$MAGVLT_{Large}$	68.1	15.5
NoCaps		
ARGVLT	33.4	6.4
ARGVLT _{Large}	34.1	6.1
MAGVLT	46.3	8.7
$MAGVLT_{Large}$	55.8	9.8

Table 10. Zero-shot I2T results on MS-COCO Karpathy test (**Top**) and NoCaps validation (**Bottom**).

- Finetuning on Downstream Tasks

- Generation & Understanding

Finetuned I2T

Model	B-4	M	C	S
ARGVLT	28.6	25.2	94.7	18.1
MAGVLT	29.3	27.1	103.3	20.5
MAGVLT _{Large}	32.3	27.9	110.7	21.0

Table 11. Comparisons of finetuned models on MS-COCO Karpathy splits.

Finetuned VQAv2

Model	test-dev	test-std
VLKD _{ViT-B/16} [14]	69.8	-
MetaLM [24]	74.4	74.5
MAGVLT	63.0	63.4
MAGVLT _{Large}	65.7	66.2

Table 12. Experimental results on VQAv2.

Unconditional Image+Text Generation

person and the sun pattern samsung galaxy galaxy snap

close up of a coin , a red background

the north face black 's t shirt grev

a vase with white and yellow flowers

vector illustration of a modern house on the background .

two white clouds in a blue sky . vector illustration royalty free

cartoon mman running on a yellow background

a wooden fence in the foreground with snow capped mountains

an oil painting of a lake surrounded by green trees in the the

a field of purple flowers growing in a garden.

the coral reef is one of the most beautiful places in the the .

a bed or beds in a room at the person guest house

guest room of ` ` the person ' ' hotel / news photo

close up of strawberries in a bowl with a spoon on a wooden table

a bowl of chicken meatballs in a white bowl with parsley .

large large elephant standing in the water.

funny black and white dog looking at the camera on a white background

white cat is sitting in the snow . in a winter park stock photos

the giraffe is standing on the beach

royalty free

illustration

eiffel tower on a

pastel background

Conclusion

- MAGVLT as a unified generative VL model that can produce both image and text data.
- Masked generative transformer with a robust training on image-text pairs by multiple training tasks.
- MAGVLT outperforms ARGVLT and shows competitive performances on both of zeroshot image-to-text and text-to-image generation tasks for the first time.

Ongoing works

- Scale-up both model and data
- Leverage language model and data
- Universal model for both understanding and generation
- Increase modalities (e.g. audio)

Poster: THU-PM-261

https://github.com/kakaobrain/magvlt

