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We propose a robust and effective 2D projection-based backbone, referred to as ViewNet, for
few-shot point cloud classification

We first provide an analysis of commonly used 3D point-based backbones in terms of point
utilization, and argue that they are not well-suited for the few-shot learning task, especially with
real-word point clouds obtained via scanning

After visualizing projected depth images of point clouds, we observe that some projections are
robust to missing points and deformations

Motivated by above, we present ViewNet, which uses six different depth images that are projections
of a point cloud, and employs our proposed View Pooling to generate more descriptive and
distinguishing features

ViewNet achieves SOTA performance on ScanObjectNN, ModelNet40-C and ModelNet40 datasets,
and outperforms four different baselines on few-shot point cloud classification

Ablation studies show that the ViewNet backbone can generalize and be employed together with
different few-shot prediction heads, providing better performance than point-based backbones
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Cross-Instance Adaptation (CIA) [1] is a SOTA network, which uses a novel few-shot head
with attention mechanism, referred to as CIA, for few-shot point cloud classification.

In [1], different point cloud analysis networks [2-6] are compared as backbones, and it was
shown that the best performance is achieved when DGCNN [6] is used as the backbone.

In this work, we first show that point-based methods, such as DGCNN [6], are not the most
suitable backbones for few-shot point cloud classification task, and then propose ViewNet.
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Point Utilization Analysis
® In our previous work [7], we had shown that a large number of points are discarded during max
pooling.
® In this study, we analyze the number of points utilized by DGCNN, for both traditional
supervised classification and few-shot classification, on ModelNet40 [8] and ScanObjectNN [9]
datasets. For few-shot classification, we use ProtoNet [10] to perform the experiments.
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TSC refers to traditional supervised classification, and FS-n represents few-shot point cloud classification experiment
at fold n. The number of input points is 1024 for all the experiments.
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Point Utilization Analysis Cont’d e With the number of points utilized for
few-shot classification being less than
Dataset Experiment Name | MED of no. of kept pnts | Accuracy that for TSC , itis hard to expect DGCNN

ModelNet40 TSC 252464 92.51%

et = e T to ext.ract the bgst set of features to
ModelNet40 FS-1 257390 83.46% describe 3D objects.

ModelNet40 FS-2 246413 74.08%

ModelNet40 FS-3 271416 76.13% e Compared to ModelNet40 dataset,
ScanObjectNN TSC 234397 83.10% DGCNN uses less points on
ScanObjectNN FS-0 237363 50.58% : :
ScanObjociNN e e e ScanObjectNN, and provides lower
ScanObjectNN FS-2 248400 62.59% accuracy.

TSC s the traditional supervised point cloud classification, and F5-n @ Thus, it can be inferred that missing
is few-shot point cloud classification at fold n. a — b shows the

median value of the number of utilized points before and after points and deformed shapes can

training, respectively. negatively affect max-pooling, causing to
pick up inadequate points to represent a
3D shape.
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Point Projection Analysis

Original Angle 1 Angle 2 Angle 3 Angle 4 Angle 5 . .
T e gme e o e The first row: a point cloud sampled from a

3 CAD model (referred to as Original), and
point clouds with simulated missing points
seen from five different angles.

e Rows 2 - 5: projection images on different
planes

e Although the missing portion of the point
cloud can be different, some projection
images can provide robustness to varying
occlusions
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e Although projection-based approach [12] has been used together with ResNet for supervised

point cloud classification, a traditional image classification backbone, such as ResNet, is not the
most suitable for few-shot classification.

e Traditional CNN-based backbones are composed of convolution layers and process all depth

images separately, without a module for extracting distinguishing features among all views’
feature maps.

Model

fold O

fold 1

fold 2

fold 3

Mean

5-way
1-shot

DGCNN+ProtoNet

85.42%

79.46%

70.06%

70.73%

76.42 %

ResNet+ProtoNet

83.29%

79.35%

64.44%

74.42%

75.38% %

5-way
5-shot

DGCNN+ProtoNet

93.99 %

88.65%

84.76 %

85.56%

88.24%

ResNet+ProtoNet

92.61%

87.39%

80.91%

86.96%

86.97% %

Comparison of ProtoNet’s performance on ModelNet40, with DGCNN and ResNet as backbones, for
5-way 1-shot and 5-way 5-shot classification.
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® View Pooling extracts more descriptive and distinguishing features from different combinations of
views, which are then fed into the Point Feature Learning Branch for further processing
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Pomt Feature Learning Branch
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Five new feature maps (Ci) are obtained from
six view features in D by using them in different
combinations

Three of the five feature maps are obtained by
taking all pairs of opposite projection feature
maps into account, i.e. {(left, right), (front,
back), (top, bottom)}. If a small part of points is
missing, it is likely that at least one projection
image in this combination of opposite
projections is not affected greatly

Remaining two of the five feature maps come
from triplet combinations {(left, front, top),
(right, back, bottom)}, since these three-view
drawings are able to depict an object’s 3D
shape
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® ModelNet40 [8] is a commonly used point cloud dataset, which contains 12,311 CAD models
of 40 man-made object categories
® \We sort those classes by their ID in an ascending order, and divide 40 classes into 4 folds to

perform 4-fold cross validation experiments

e Our method outperforms all baselines in terms of mean accuracy for both 1-shot and 5-shot

classification

fold 0 fold | fold 2 fold 3 Mean

MetaOpt 82.87#0.72 | 75.7740.83 | 65.31£0.92 | 66.97£0.93 | 72.7320.85
S-way RelationNet | 82.1440.69 | 77.4640.80 | 66.09£091 | 69.47+0.84 | 75.234+0.81
Yl ProtoNet 85.4240.64 | 79.4620.76 | 70.06£0.39 | 70.73£0.42 | 76.42+0.55
CIA 89.9740.63 | 83.46+0.83 | 74.08+0.95 | 76.13£0.86 | 80.91+0.82
Ours 92.5740.52 | 82.68+0.80 | 75.28+0.90 | 80.95+0.75 | 82.87+0.74
MetaOpt 92.3740.38 | 86.4440).62 | 82.1020.58 | 83.15£0.55 | 86.02+0.53

S-way RelationNet | 91.5340.38 | 85.11+0.61 | 79.36+0.63 | 83.01+0.52 M.?Si().SL
5-shot ProtoNet 93.9940.29 | 88.6520.54 | 84.7620.51 | 85.56+0.48 | 88.2440.45
' CIA 94.61£0.30 | 89.1520.55 | 85.00£0.51 | 86.71£0.50 | 88.87+0.47
Ours 96.23£0.26 | 89.64£0.55 | 85.74x0.51 | 90.18£0.45 | 90.45£0.44

_UNE P 2023
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e ModelNet40-C [11] contains the point clouds of the same 40 classes as ModelNet40, and
different from ModelNet40, ModelNet40-C contains point clouds with different types of
corruption to simulate real-world scenarios

® Again 4 folds are used for cross validation

e Our method outperforms all the baselines for each fold and for both 1-shot and 5-shot
classification and improvement margins are larger compared to ModelNet40 dataset

fold 0 fold | fold 2 fold 3 Mean

Metaopt 78.2840.79 | 75.34+0.84 | 58.07+0.86 | 66.29+0.91 69.504(0.85
Sty RelationNet | 79.59+0.74 | 74.63+0.84 | 59.03+0.81 68.38+0.86 | 70.41+0.81]
1-shot ProtoNet 81.2940.71 | 75.832£0.79 | 61.76+£0.84 | 69.83£0.84% | 72.18+0.80
CIA 85.7020.75 | 79.67+0.90 | 65.68+1.0 74.3240.94 | 76.34+0.89
Ours 89.47+0.58 | 81.05£0.78 | 69.56+0.89 | 76.29+0.85 | 79.09+0.78
Metaopt 91.0940.40 | 84.19+0.57 | 75.1020.73 | 81.3420.53 | 82.93+0.56
Sty RelationNet | 87.12+0.46 | 83.5540.54 | 70.18+0.78 | 79.01£0.58 | 79.97+0.59
o ProtoNet 90.97+0.39 | 86.21+0.50 | 76.99+0.65 | 83.19+0.51 84.34+0.51
’ CIA 92.07+0.36 | 86.81+0.56 | 76.11+0.71 83.71+0.51 84.68+0.54

Ours 94.95+0.31 | 88.754£0.49 | 81.53+£0.60 | 86.78+0.46 88+0.47
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ScanObjectNN [9] dataset contains 15k objects from 15 categories
Since the point clouds are scanned from real world objects, missing points due to occlusion
frequently occur, posing greater challenges

The classes are sorted in ascending order based on their ID, and then evenly divided into 3
folds for 3-fold cross validation
Improvement margins are highest on this dataset showing that our proposed method is also
effective on point clouds scanned from the real-world

fold 0 fold 1 fold 2 Mean

MetaOpt 41.92+0.72 | 61.12+0.66 | 53.87+0.78 | 52.30+0.72
Sy RelationNet | 50.29+0.76 | 54.23+0.63 | 51.45+0.64 | 51.99+0.68
I-shiot ProtoNet S50.81+0.73 | 60.46+0.67 | 58.72+0.78 | 56.66+0.73
CIA 50.58+0.82 | 62.17+0.68 | 62.59+0.74 | 58.45+0.75

Ours 60.90+0.76 | 66.48+0.60 | 64.10+£0.77 | 63.83+0.71
MetaOpt 63.86+0.56 | 67.73+0.45 | 70.19+0.49 | 67.26%0.50
S RelationNet | 58.65+0.53 | 66.72+0.50 | 65.94+0.52 | 63.77+0.52
S ahoi ProtoNet 68.42+0.54 | 70.20+0.52 | 68.76+0.49 | 69.13+0.52
CIA 62.94+0.51 | 71.31+0.45 | 70.21+0.48 | 68.15+0.48

Ours 73.66£0.48 | 74.77+0.45 | 77.46x0.46 | 75.3x0.46
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e Effectiveness of bin-wise loss
® ViewNet’s Generalizability as a backbone
e Effectiveness of View Pooling
fold 0 fold 1 fold 2 Mean
DGCNN+MetaOpt 41.92% 61.12% 53.87% 52.3%
Siway ViewNet+MetaOpt 48.74% (16.82%) 61.62% (10.5%) | 58.95% (15.08%) | 56.44% (14.14%)
1-shot DGCNN+RelationNet 50.29% 54.23% 51.45% 51.99%
ViewNet+MetaOpt 55.73% (15.44%) 60.32% (16.09%) | 59.10% (17.65%) | 58.38% (16.39%)
DGCNN-+ProtoNet 50.81% 60.46% 58.72% 56.66%
ViewNet+ProtoNet 56.02% (15.21%) 64.06% (13.6%) 64.05% (15.33%) | 61.37% (14.71%)
DGCNN+CIA 50.58% 62.17% 62.59% 58.45%
ViewNet+CIA 60.81% (110.23%) | 65.84% (13.67%) | 64.19% (11.6%) | 63.61% (15.16%)
DGCNN+MetaOpt 63.86% 67.73% 70.19% 67.26%
Siway ViewNet+MetaOpt 67.97% (14.11%) | 73.04% (15.31%) | 75.12% (14.93%) | 72.04% (14.78%)
Sahot DGCNN-+RelationNet 58.65% 66.72% 65.94% 63.77%
ViewNet+RelationNet 67.49% (18.84%) 66.51% (10.21%) 72.01% (16.08%) 68.67 % (14.9 %)
DGCNN-+ProtoNet 68.42% 70.2% 68.76% 69.13%
ViewNet+ProtoNet 7513% (16.71%) | 74.41% (14.21%) | 77.07% (18.31%) | 75.54% (16.41%)
DGCNN+CIA 62.94% 71.31% 70.21% 68.15%
ViewNet+CIA 72.69% (19.75%) 73.56% (12.25%) | 75.33% (15.12%) | 73.86% (15.71%)

Backbone Feature | fold 0 fold 1 fold 2 Mean
5-way 0O’ 57.29% | 64.47% | 62.52% | 61.43%
I-shot 0 60.90% | 66.48% | 64.10% | 63.83%
5-way & 73.28% | 74.41% | 75.42% | 74.37%
5-shot O 73.66% | 74.77% | 77.46% | 75.30%
Analysis of the Bin-wise Loss
View Pooling Type | fold 0 fold 1 fold 2 Mean
5-way Without C; 60.98% | 63.41% | 63.81% | 62.73%
1-shot With C; 60.90% | 66.48% | 64.10% | 63.83%
5-way Without C; 73.14% | 72.76% | 75.85% | 73.92%
5-shot With C; 73.66% | 74.77% | 77.46% | 75.30%

ViewNet’s Generalizability as a Backbone

Analysis of View Pooling
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