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Summary

● We propose a robust and effective 2D projection-based backbone, referred to as ViewNet, for 

few-shot point cloud classification

● We first provide an analysis of commonly used 3D point-based backbones in terms of point 

utilization, and argue that they are not well-suited for the few-shot learning task, especially with 

real-word point clouds obtained via scanning

● After visualizing projected depth images of point clouds, we observe that some projections are 

robust to missing points and deformations

● Motivated by above, we present ViewNet, which uses six different depth images that are projections 

of a point cloud, and employs our proposed View Pooling to generate more descriptive and 

distinguishing features

● ViewNet achieves SOTA performance on ScanObjectNN, ModelNet40-C and ModelNet40 datasets, 

and outperforms four different baselines on few-shot point cloud classification

● Ablation studies show that the ViewNet backbone can generalize and be employed together with 

different few-shot prediction heads, providing better performance than point-based backbones
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State-of-the-art (SOTA)

● Cross-Instance Adaptation (CIA) [1] is a SOTA network, which uses a novel few-shot head 
with attention mechanism, referred to as CIA, for few-shot point cloud classification.

● In [1], different point cloud analysis networks [2-6] are compared as backbones, and it was 
shown that  the best performance is achieved when DGCNN [6] is used as the backbone.

● In this work, we first show that point-based methods, such as DGCNN [6], are not the most 
suitable  backbones for few-shot point cloud classification task, and then propose ViewNet.

Pipeline of CIA [1]
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Point Utilization Analysis
● In our previous work [7], we had shown that a large number of points are discarded during max 

pooling. 
● In this study, we analyze the number of points utilized by DGCNN, for both traditional 

supervised classification and few-shot classification, on ModelNet40 [8] and ScanObjectNN [9] 
datasets. For few-shot classification, we use ProtoNet [10] to perform the experiments.

TSC refers to traditional supervised classification, and FS-n represents few-shot point cloud classification experiment 
at fold n. The number of input points is 1024 for all the experiments.

Motivation - I
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Point Utilization Analysis Cont’d

TSC is the traditional supervised point cloud classification, and FS-n 
is few-shot point cloud classification at fold n. a → b shows the 
median value of the number of utilized points before and after 

training, respectively.

Motivation - I

● With the number of points utilized for 
few-shot classification being less than 
that for TSC, it is hard to expect DGCNN 
to extract the best set of features to 
describe 3D objects.

● Compared to ModelNet40 dataset, 
DGCNN uses less points on 
ScanObjectNN, and provides lower 
accuracy. 

● Thus, it can be inferred that missing 
points and deformed shapes can 
negatively affect max-pooling, causing to 
pick up inadequate points to represent a 
3D shape.
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Point Projection Analysis

• The first row: a point cloud sampled from a 
CAD model (referred to as Original), and 
point clouds with simulated missing points 
seen from five different angles. 

• Rows 2 - 5: projection images on different 
planes

• Although the missing portion of the point 
cloud can be different, some projection 
images can provide robustness to varying 
occlusions

Motivation - II
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● Although projection-based approach [12] has been used together with ResNet  for supervised 
point cloud classification, a traditional image classification backbone, such as ResNet, is not the 
most suitable for few-shot classification.

● Traditional CNN-based backbones are composed of convolution layers and process all depth 
images separately, without a module for extracting distinguishing features among all views’ 
feature maps.

Comparison of ProtoNet’s performance on ModelNet40, with DGCNN and ResNet as backbones, for 
5-way 1-shot and 5-way 5-shot classification.

Motivation - III
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Proposed ViewNet

Set Pooling. b is the number of bins, p is the number of pixels 
in each bin. The pooling is performed along the pixel 

dimension

● In Projection Feature Learning 
branch, convolution and max 
pooling are used to process each 
depth image independently, and 
obtain intermediate feature maps 
{Di|i ∈ {1, 2, 3}} for our proposed 
View Pooling. 

● View Pooling extracts more descriptive and distinguishing features from different combinations of 
views, which are then fed into the Point Feature Learning Branch for further processing
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Proposed ViewNet

Set Pooling. b is the number of bins, p is the number of pixels 
in each bin. The pooling is performed along the pixel 

dimension

● The Point Feature Learning Branch learns 
the features describing the point cloud’s 
shape from the feature maps of all six 
projections

● To learn discriminative features in 
different receptive fields, the pixels in 
feature maps F4 and F5 are divided into 
n-many bins

● Each bin’s feature is fed into few-shot 
head, and the bin’s loss is obtained. Final 
loss is computed by summing up n losses
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View Pooling

• Five new feature maps (Ci) are obtained from 
six view features in D by using them in different 
combinations

• Three of the five feature maps are obtained by 
taking all pairs of opposite projection feature 
maps into account, i.e. {(left, right), (front, 
back), (top, bottom)}. If a small part of points is 
missing, it is likely that at least one projection 
image in this combination of opposite 
projections is not affected greatly

• Remaining two of the five feature maps come 
from triplet combinations {(left,  front, top), 
(right, back, bottom)}, since these three-view 
drawings are able to depict an object’s 3D 
shape
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Experiments on ModelNet40

● ModelNet40 [8] is a commonly used point cloud dataset, which contains 12,311 CAD models 
of 40 man-made object categories 

● We sort those classes by their ID in an ascending order, and divide 40 classes into 4 folds to 
perform 4-fold cross validation experiments

● Our method outperforms all baselines in terms of mean accuracy for both 1-shot and 5-shot 
classification
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Experiments on ModelNet40-C

● ModelNet40-C [11] contains the point clouds of the same 40 classes as ModelNet40, and 
different from ModelNet40, ModelNet40-C contains point clouds with different types of 
corruption to simulate real-world scenarios

● Again 4 folds are used for cross validation
● Our method outperforms all the baselines for each fold and for both 1-shot and 5-shot 

classification and improvement margins are larger compared to ModelNet40 dataset
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Experiments on ScanObjectNN

● ScanObjectNN [9] dataset contains 15k objects from 15 categories
● Since the point clouds are scanned from real world objects, missing points due to occlusion 

frequently occur, posing greater challenges 
● The classes are sorted in ascending order based on their ID, and then evenly divided into 3 

folds for 3-fold cross validation
● Improvement margins are highest on this dataset showing that our proposed method is also 

effective on point clouds scanned from the real-world
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Ablation Studies

ViewNet’s Generalizability as a Backbone
Analysis of View Pooling

Analysis of the Bin-wise Loss

We perform ablation studies to analyze:
● Effectiveness of bin-wise loss
● ViewNet’s Generalizability as a backbone
● Effectiveness of View Pooling 
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Thanks!

Questions? 

jchen152@syr.edu 


