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Apply rigid & non-rigid transformations on specific areas of the object.
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Shape editing involves making local changes to the shape and appearance of different regions of an
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Apply rigid & non-rigid transformations on specific areas of the object.
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Color Bucket

Shape editing involves making local changes to the shape and appearance of different regions of an
object. A user may want to:

Apply rigid & non-rigid transformations on specific areas of the object.
Change the appearance of an object part.
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Why do we need parts for 3D object generation?
Shape editing involves making local changes to the shape and appearance of different regions of an
object. A user may want to:

Apply rigid & non-rigid transformations on specific areas of the object.
Change the appearance of an object part.
Combine parts from different objects.

Shape #1 Parts Shape #2 Parts

Parts enable local control!
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Existing Methods
NeRF-based Generative Models

 High quality 3D meshes

 2D Supervision

 No explicit part-level control

Part-based Generative Models

 Explicit part-level control

 3D Supervision

 No texture information
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Parts as Neural Radiance Fields
PartNeRF decomposes a 3D object into M parts, each parametrized as a NeRF!
Each part m consists of:

1. An affine transformation  mapping a point  to the local coordinate system
of the part, where  a translation vector and  a rotation matrix.

T ​(x) =m R ​(x −m t ​)m x
t ​ ∈m R3 R ​ ∈m SO(3)

2. A scale vector .s ​ ∈m R3

3. Two latent codes: shape  and texture .z ​ ∈m
s RL ​s z ​ ∈m

t RL ​t

4. Two separate networks, a color network  and an occupancy network .c ​θ
m o ​θ

m
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where  is the occupancy function of the -th ellipsoid.g ​(x) =θ
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Hard Assignment between Rays and Parts
We impose a hard assignment between rays and parts, associating a ray with the first part it itersects.

ψ ​(m) =r min i ∈ {1, … ,N} : h ​(x ​) ≥ τ{ θ
m

i
r }

We define the set of rays  as the set of rays that first intersect with the -th part:R ​m m

R ​ =m r ∈ R  :  m = ψ ​(k){
k∈{0…M}
arg min r }
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Hard Assignment between Rays and Parts
We impose a hard assignment between rays and parts, associating a ray with the first part it itersects.

ψ ​(m) =r min i ∈ {1, … ,N} : h ​(x ​) ≥ τ{ θ
m

i
r }

The rendering equation for the entire object using  NeRFs becomesM
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Our objective function  is composed of 6 terms, and 2 regularizers on the shape and texture embeddings :L z , zs t
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Reconstruction Loss: The rendered and ground truth image colors should match.
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Control Loss: The parts should be of similar 3D volume.
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Scene-Specific Editing
No editing Rotation Translation

Scaling Scaling Colorization
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Project Page: https://ktertikas.github.io/part_nerf
CVPR Poster: TUE-PM-032
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