
Generating Part-Aware Editable 3D Shapes without 3D
Supervision

1 National and Kapodistrian University of Athens 2 Stanford University 3 ATHENA Research Center

4 Institute of Advanced Research in Artificial Intelligence (IARAI)

CVPR, 2023

TUE-PM-032

Konstantinos Tertikas 1, 3 Despoina Paschalidou 2 Boxiao Pan 2 Jeong Joon Park 2 Mikaela Angelina Uy 2

Ioannis Emiris 3, 1 Yannis Avrithis 4 Leonidas J. Guibas 2

1

https://ktertikas.github.io/
https://paschalidoud.github.io/
https://cs.stanford.edu/~bxpan/
https://jjparkcv.github.io/
https://mikacuy.github.io/
https://cgi.di.uoa.gr/~emiris/
https://avrithis.net/
https://geometry.stanford.edu/member/guibas/

Why do we need parts for 3D object generation?

2

Why do we need parts for 3D object generation?
Shape editing involves making local changes to the shape and appearance of different regions of an
object. A user may want to:

2.1

Why do we need parts for 3D object generation?

Move Bucket

Shape editing involves making local changes to the shape and appearance of different regions of an
object. A user may want to:

Apply rigid & non-rigid transformations on specific areas of the object.

2.2

Why do we need parts for 3D object generation?

Scale Cockpit

Shape editing involves making local changes to the shape and appearance of different regions of an
object. A user may want to:

Apply rigid & non-rigid transformations on specific areas of the object.

2.3

Why do we need parts for 3D object generation?

Color Bucket

Shape editing involves making local changes to the shape and appearance of different regions of an
object. A user may want to:

Apply rigid & non-rigid transformations on specific areas of the object.
Change the appearance of an object part.

2.4

Why do we need parts for 3D object generation?
Shape editing involves making local changes to the shape and appearance of different regions of an
object. A user may want to:

Apply rigid & non-rigid transformations on specific areas of the object.
Change the appearance of an object part.
Combine parts from different objects.

2.5

Why do we need parts for 3D object generation?
Shape editing involves making local changes to the shape and appearance of different regions of an
object. A user may want to:

Apply rigid & non-rigid transformations on specific areas of the object.
Change the appearance of an object part.
Combine parts from different objects.

2.6

Why do we need parts for 3D object generation?
Shape editing involves making local changes to the shape and appearance of different regions of an
object. A user may want to:

Apply rigid & non-rigid transformations on specific areas of the object.
Change the appearance of an object part.
Combine parts from different objects.

Shape #1 Parts Shape #2 Parts

2.7

Why do we need parts for 3D object generation?
Shape editing involves making local changes to the shape and appearance of different regions of an
object. A user may want to:

Apply rigid & non-rigid transformations on specific areas of the object.
Change the appearance of an object part.
Combine parts from different objects.

Shape #1 Parts Shape #2 Parts

2.8

Why do we need parts for 3D object generation?
Shape editing involves making local changes to the shape and appearance of different regions of an
object. A user may want to:

Apply rigid & non-rigid transformations on specific areas of the object.
Change the appearance of an object part.
Combine parts from different objects.

Shape #1 Parts Shape #2 Parts

Parts enable local control!

2.9

Existing Methods

3

Existing Methods
NeRF-based Generative Models

3.1

Existing Methods
NeRF-based Generative Models

 High quality 3D meshes

 2D Supervision

3.2

Existing Methods
NeRF-based Generative Models

 High quality 3D meshes

 2D Supervision

 No explicit part-level control
3.3

Existing Methods
NeRF-based Generative Models

 High quality 3D meshes

 2D Supervision

 No explicit part-level control

Part-based Generative Models

3.4

Existing Methods
NeRF-based Generative Models

 High quality 3D meshes

 2D Supervision

 No explicit part-level control

Part-based Generative Models

 Explicit part-level control

3.5

Existing Methods
NeRF-based Generative Models

 High quality 3D meshes

 2D Supervision

 No explicit part-level control

Part-based Generative Models

 Explicit part-level control

 3D Supervision

 No texture information

3.6

PartNeRF

4

PartNeRF
3D part-aware generative model

4.1

PartNeRF
3D part-aware generative model
Can perform local shape & appearance edits

4.2

PartNeRF
3D part-aware generative model
Can perform local shape & appearance edits
Trained only using posed images & object masks

4.3

PartNeRF
3D part-aware generative model
Can perform local shape & appearance edits
Trained only using posed images & object masks

4.4

Neural Radiance Fields
NeRFs map a 3D point and a viewing direction to a color and a volume density .x ∈ R3 d ∈ S2 c ∈ R3 σ ∈ R+

5

Neural Radiance Fields
NeRFs map a 3D point and a viewing direction to a color and a volume density .x ∈ R3 d ∈ S2 c ∈ R3 σ ∈ R+

6

Neural Radiance Fields
NeRFs map a 3D point and a viewing direction to a color and a volume density .x ∈ R3 d ∈ S2 c ∈ R3 σ ∈ R+

The rendered color for a ray is calculated by
accumulating the predicted for sampled

points along :

r

{c ​,σ ​} ​i
r

i
r N N

X ​ =r {x ​} ​i
r

i=1
N r

(r) =Ĉ ​ exp (−
i=1
∑
N

​σ ​δ ​)(1 −
i<j

∑ j
r

j
r exp(−σ ​δ ​))c ​i

r
i
r

i
r

6.1

Neural Radiance Fields
NeRFs map a 3D point and a viewing direction to a color and a volume density .x ∈ R3 d ∈ S2 c ∈ R3 σ ∈ R+

The rendered color for a ray is calculated by
accumulating the predicted for sampled

points along :

r

{c ​,σ ​} ​i
r

i
r N N

X ​ =r {x ​} ​i
r

i=1
N r

(r) =Ĉ ​ exp (−
i=1
∑
N

​σ ​δ ​)(1 −
i<j

∑ j
r

j
r exp(−σ ​δ ​))c ​i

r
i
r

i
r

or equally

(r) =Ĉ ​o ​ ​ 1 − o ​ c ​

i=1
∑
N

i
r

j<i

∏ (j
r) i

r

with the occupancy value at
point and the distance between two adjacent ray

points.

o ​ =i
r 1 − exp(−σ ​δ ​)i

r
i
r

x ​i
r δ ​i

r

6.2

Parts as Neural Radiance Fields

7

Parts as Neural Radiance Fields
PartNeRF decomposes a 3D object into M parts, each parametrized as a NeRF!

7.1

Parts as Neural Radiance Fields
PartNeRF decomposes a 3D object into M parts, each parametrized as a NeRF!
Each part m consists of:

1. An affine transformation mapping a point to the local coordinate system
of the part, where a translation vector and a rotation matrix.

T ​(x) =m R ​(x −m t ​)m x
t ​ ∈m R3 R ​ ∈m SO(3)

7.2

Parts as Neural Radiance Fields
PartNeRF decomposes a 3D object into M parts, each parametrized as a NeRF!
Each part m consists of:

1. An affine transformation mapping a point to the local coordinate system
of the part, where a translation vector and a rotation matrix.

T ​(x) =m R ​(x −m t ​)m x
t ​ ∈m R3 R ​ ∈m SO(3)

2. A scale vector .s ​ ∈m R3

7.3

Parts as Neural Radiance Fields
PartNeRF decomposes a 3D object into M parts, each parametrized as a NeRF!
Each part m consists of:

1. An affine transformation mapping a point to the local coordinate system
of the part, where a translation vector and a rotation matrix.

T ​(x) =m R ​(x −m t ​)m x
t ​ ∈m R3 R ​ ∈m SO(3)

2. A scale vector .s ​ ∈m R3

3. Two latent codes: shape and texture .z ​ ∈m
s RL ​s z ​ ∈m

t RL ​t

7.4

Parts as Neural Radiance Fields
PartNeRF decomposes a 3D object into M parts, each parametrized as a NeRF!
Each part m consists of:

1. An affine transformation mapping a point to the local coordinate system
of the part, where a translation vector and a rotation matrix.

T ​(x) =m R ​(x −m t ​)m x
t ​ ∈m R3 R ​ ∈m SO(3)

2. A scale vector .s ​ ∈m R3

3. Two latent codes: shape and texture .z ​ ∈m
s RL ​s z ​ ∈m

t RL ​t

4. Two separate networks, a color network and an occupancy network .c ​θ
m o ​θ

m

7.5

Parts as Neural Radiance Fields

8

Parts as Neural Radiance Fields
The color network and the occupancy network predict the color and occupancy value respectively.c ​θ

m o ​θ
m

8.1

Parts as Neural Radiance Fields
The color network and the occupancy network predict the color and occupancy value respectively.c ​θ

m o ​θ
m

To enforce that each part captures local and continuous regions of the object, we multiply the
occupancy function with an axis-aligned 3D ellipsoid occupancy function:

h ​(x) =θ
m o ​(x)g ​(x),θ

m
θ
m

8.2

Parts as Neural Radiance Fields
The color network and the occupancy network predict the color and occupancy value respectively.c ​θ

m o ​θ
m

To enforce that each part captures local and continuous regions of the object, we multiply the
occupancy function with an axis-aligned 3D ellipsoid occupancy function:

h ​(x) =θ
m o ​(x)g ​(x),θ

m
θ
m

where is the occupancy function of the -th ellipsoid.g ​(x) =θ
m g(T ​(x), s ​)m m m

8.3

Parts as Neural Radiance Fields
The color network and the occupancy network predict the color and occupancy value respectively.c ​θ

m o ​θ
m

To enforce that each part captures local and continuous regions of the object, we multiply the
occupancy function with an axis-aligned 3D ellipsoid occupancy function:

h ​(x) =θ
m o ​(x)g ​(x),θ

m
θ
m

where is the occupancy function of the -th ellipsoid.g ​(x) =θ
m g(T ​(x), s ​)m m m

The per-part rendering equation now becomes:

​(r) =Ĉm ​h ​(x ​) ​ 1 − h ​(x ​) c ​(x ​)
i=1

∑
N

θ
m

i
r

j<i

∏ (θ
m

j
r) θ

m
i
r

8.4

Hard Assignment between Rays and Parts

9

Hard Assignment between Rays and Parts
We impose a hard assignment between rays and parts, associating a ray with the first part it itersects.

9.1

Hard Assignment between Rays and Parts
We impose a hard assignment between rays and parts, associating a ray with the first part it itersects.

ψ ​(m) =r min i ∈ {1, … ,N} : h ​(x ​) ≥ τ{ θ
m

i
r }

9.2

Hard Assignment between Rays and Parts
We impose a hard assignment between rays and parts, associating a ray with the first part it itersects.

ψ ​(m) =r min i ∈ {1, … ,N} : h ​(x ​) ≥ τ{ θ
m

i
r }

We define the set of rays as the set of rays that first intersect with the -th part:R ​m m

R ​ =m r ∈ R : m = ψ ​(k){
k∈{0…M}
arg min r }

9.3

Hard Assignment between Rays and Parts
We impose a hard assignment between rays and parts, associating a ray with the first part it itersects.

ψ ​(m) =r min i ∈ {1, … ,N} : h ​(x ​) ≥ τ{ θ
m

i
r }

The rendering equation for the entire object using NeRFs becomesM

(r) =Ĉ ​ 1l ​ ​(r).
m=1

∑
M

r∈R ​m
Ĉm

9.4

3D Object Generation

10

3D Object Generation
We are given a collection of posed 2D images of objects in a semantic class, along with the respective object

masks.

10.1

3D Object Generation
We are given a collection of posed 2D images of objects in a semantic class, along with the respective object

masks.

10.2

3D Object Generation
We are given a collection of posed 2D images of objects in a semantic class, along with the respective object

masks.

Decomposition Network: Maps and to M latent codes that control the per-part shape and texture.zs zt

10.3

3D Object Generation
We are given a collection of posed 2D images of objects in a semantic class, along with the respective object

masks.

Decomposition Network: Maps and to M latent codes that control the per-part shape and texture.zs zt
Structure Network: Predicts the pose and scale for each part m.

10.4

3D Object Generation
We are given a collection of posed 2D images of objects in a semantic class, along with the respective object

masks.

Decomposition Network: Maps and to M latent codes that control the per-part shape and texture.zs zt
Structure Network: Predicts the pose and scale for each part m.

10.5

3D Object Generation
We are given a collection of posed 2D images of objects in a semantic class, along with the respective object

masks.

Decomposition Network: Maps and to M latent codes that control the per-part shape and texture.zs zt
Structure Network: Predicts the pose and scale for each part m.
Neural Rendering Network: Renders a 2D image using M locally defined NeRFs.

10.6

3D Object Generation
We are given a collection of posed 2D images of objects in a semantic class, along with the respective object

masks.

Decomposition Network: Maps and to M latent codes that control the per-part shape and texture.zs zt
Structure Network: Predicts the pose and scale for each part m.
Neural Rendering Network: Renders a 2D image using M locally defined NeRFs.

10.7

Training

11

Training
Our objective function is composed of 6 terms, and 2 regularizers on the shape and texture embeddings :L z , zs t

11.1

Training
Our objective function is composed of 6 terms, and 2 regularizers on the shape and texture embeddings :L z , zs t

 L = L ​(R)rgb

Reconstruction Loss: The rendered and ground truth image colors should match.

11.2

Training
Our objective function is composed of 6 terms, and 2 regularizers on the shape and texture embeddings :L z , zs t

 L = L ​(R)rgb + L ​(R)mask

Reconstruction Loss: The rendered and ground truth image colors should match.
Mask Loss: The rendered and ground truth mask values should match.

11.3

Training
Our objective function is composed of 6 terms, and 2 regularizers on the shape and texture embeddings :L z , zs t

 L = L ​(R)rgb + L ​(R)mask + L ​(R)occ

Reconstruction Loss: The rendered and ground truth image colors should match.
Mask Loss: The rendered and ground truth mask values should match.
Occupancy Loss: The generated shape should occupy space.

11.4

Training
Our objective function is composed of 6 terms, and 2 regularizers on the shape and texture embeddings :L z , zs t

 L = L ​(R)rgb + L ​(R)mask + L ​(R)occ + L ​(R)cov

Reconstruction Loss: The rendered and ground truth image colors should match.
Mask Loss: The rendered and ground truth mask values should match.
Occupancy Loss: The generated shape should occupy space.
Coverage Loss: The parts should be distributed along the object.

11.5

Training
Our objective function is composed of 6 terms, and 2 regularizers on the shape and texture embeddings :L z , zs t

 L = L ​(R)rgb + L ​(R)mask + L ​(R)occ + L ​(R)cov + L ​(R)overlap

Reconstruction Loss: The rendered and ground truth image colors should match.
Mask Loss: The rendered and ground truth mask values should match.
Occupancy Loss: The generated shape should occupy space.
Coverage Loss: The parts should be distributed along the object.
Overlapping Loss: The parts should not be overlapping.

11.6

Training
Our objective function is composed of 6 terms, and 2 regularizers on the shape and texture embeddings :L z , zs t

 L = L ​(R)rgb + L ​(R)mask + L ​(R)occ + L ​(R)cov + L ​(R)overlap + L ​(R)control

Reconstruction Loss: The rendered and ground truth image colors should match.
Mask Loss: The rendered and ground truth mask values should match.
Occupancy Loss: The generated shape should occupy space.
Coverage Loss: The parts should be distributed along the object.
Overlapping Loss: The parts should not be overlapping.
Control Loss: The parts should be of similar 3D volume.

11.7

Training
Our objective function is composed of 6 terms, and 2 regularizers on the shape and texture embeddings :L z , zs t

 L = L ​(R)rgb + L ​(R)mask + L ​(R)occ + L ​(R)cov + L ​(R)overlap + L ​(R)control + z ​ +∥ s∥2 z ​∥ t∥2

Reconstruction Loss: The rendered and ground truth image colors should match.
Mask Loss: The rendered and ground truth mask values should match.
Occupancy Loss: The generated shape should occupy space.
Coverage Loss: The parts should be distributed along the object.
Overlapping Loss: The parts should not be overlapping.
Control Loss: The parts should be of similar 3D volume.

11.8

Quantitative Results
Comparisons with NeRF-based 3D Generative Methods

12

Quantitative Results
Comparisons with NeRF-based 3D Generative Methods

13

Quantitative Results
Comparisons with Part-Based 3D Generative Methods

14

Quantitative Results
Comparisons with Part-Based 3D Generative Methods

15

Scene-Specific Editing
No editing Rotation Translation

Scaling Scaling Colorization

16

Shape Mixing

17

Shape Mixing
Shape #1

17.1

Shape Mixing
Shape #1 Shape #2

17.2

Shape Mixing
Shape #1

Shape #1 Parts Shape #2 Parts

Shape #2

17.3

Shape Mixing
Shape #1

Shape #1 Parts

Shape Mixing

Shape #2 Parts

Shape #2

17.4

Shape Mixing
Shape #1

Shape #1 Parts

Shape Mixing Texture Mixing

Shape #2 Parts

Shape #2

17.5

Shape Mixing
Shape #1

Shape #1 Parts

Shape Mixing Texture Mixing Combined Mixing

Shape #2 Parts

Shape #2

17.6

Shape Mixing

18

Shape Mixing
Shape #3

18.1

Shape Mixing
Shape #3 Shape #4

18.2

Shape Mixing
Shape #3

Shape #3 Parts Shape #4 Parts

Shape #4

18.3

Shape Mixing
Shape #3

Shape #3 Parts

Shape Mixing

Shape #4 Parts

Shape #4

18.4

Shape Mixing
Shape #3

Shape #3 Parts

Shape Mixing Texture Mixing

Shape #4 Parts

Shape #4

18.5

Shape Mixing
Shape #3

Shape #3 Parts

Shape Mixing Texture Mixing Combined Mixing

Shape #4 Parts

Shape #4

18.6

Shape Editing

19

Shape Editing
R

en
de

rs
G

eo
m

et
ry

P
ar

ts

19.1

Shape Editing
R

en
de

rs
G

eo
m

et
ry

P
ar

ts

19.2

Shape Editing
R

en
de

rs
G

eo
m

et
ry

P
ar

ts

19.3

Shape Editing
R

en
de

rs
G

eo
m

et
ry

P
ar

ts

19.4

Shape Editing
R

en
de

rs
G

eo
m

et
ry

P
ar

ts

19.5

Shape Generation

20

Summary & Limitations

21

Summary & Limitations
The first part-aware generative model that parameterizes parts as NeRFs.

21.1

Summary & Limitations
The first part-aware generative model that parameterizes parts as NeRFs.
Our model enables intuitive part-level control and a broad range of editing operations not previously
possible.

21.2

Summary & Limitations
The first part-aware generative model that parameterizes parts as NeRFs.
Our model enables intuitive part-level control and a broad range of editing operations not previously
possible.
Our model is trained without explicit 3D supervision.

21.3

Summary & Limitations
The first part-aware generative model that parameterizes parts as NeRFs.
Our model enables intuitive part-level control and a broad range of editing operations not previously
possible.
Our model is trained without explicit 3D supervision.

Limitations:

21.4

Summary & Limitations
The first part-aware generative model that parameterizes parts as NeRFs.
Our model enables intuitive part-level control and a broad range of editing operations not previously
possible.
Our model is trained without explicit 3D supervision.

Limitations:
The quality of generated textures could be improved by employing GAN losses or triplane representations.

21.5

Summary & Limitations
The first part-aware generative model that parameterizes parts as NeRFs.
Our model enables intuitive part-level control and a broad range of editing operations not previously
possible.
Our model is trained without explicit 3D supervision.

Limitations:
The quality of generated textures could be improved by employing GAN losses or triplane representations.
The generated parts are not necessarily semantic.

21.6

Summary & Limitations
The first part-aware generative model that parameterizes parts as NeRFs.
Our model enables intuitive part-level control and a broad range of editing operations not previously
possible.
Our model is trained without explicit 3D supervision.

Limitations:
The quality of generated textures could be improved by employing GAN losses or triplane representations.
The generated parts are not necessarily semantic.

Project Page: https://ktertikas.github.io/part_nerf
CVPR Poster: TUE-PM-032

21.7

https://ktertikas.github.io/part_nerf

