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Preview of Our Work

O We debias predicted scene graph triplets with within-triplet Bayesian network.
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O We improve the performance of tail classes at the minimal expense of head classes
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Why debias Scene Graphs?
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Long-tailed distribution of relationship labels

U Deep learning-based Scene Graph Generation (SGG) models perform poorly on the tail classes

O Traditional debiasing schemes

O improve the tail classes with significant hurting of the head classes
O ignore within-triplet prior

O We debias scene graph with restoring within-triplet prior and hurt the head classes minimally
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Poor performance of tail classes in SOTA model



UNE 18-22, 2023

Probabilistic Debiasing of Scene Graphs CVPR B

Within-triplet Prior in Scene Graphs

O A ‘man’ will most likely ‘eat’ or ‘hold’ a ‘pizza’.

=

O A ‘man’ will most likely be ‘on’ or ‘hold’ a ‘surfboard’.

P(R| S = man, 0 = pizza)

P(R| S = man, 0 = surfboard)
O Distribution of relationship is strongly dependent on its subject ... |
] and object ! g |
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Bayesian Network (BN) to capture within-triplet prior
O Joint distribution of subject, relationship, and object is denoted by P(S, R, O)
O We aim to capture this joint distribution with a Bayesian Network

O Assumptions -
P(S) P(0)

O Relationship is dependent both on its subject and object, @
\P(R|S, (i)/@

O Subject and object are independent of each other,

O Subject and object become dependent given the relationships.

O Under these assumptions —

Q P(S,R,0) = P(R|S,0)P(S)P(0)
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Learning Within-Triplet Bayesian Network

O Learning with annotated triplets

N.;:’I”'O
P(R=7r|S=50=0)= S~ > Learning P(R|S,0)

STO

Z (R,S,0) —  Learning P(R)
5.0

O Learning with augmented triplets
O Top-50 relationships from full dataset are chosen for SGG task.
O Many other relationships in the dataset outside these top-50 bear similar meaning
1 man-consuming-pizza is similar to man-eating-pizza
O We augment triplet counts with similar triplets
O Similarity is calculated in embedding space of triplets.

.f(Tz)

man consuming pizza man cooking pizza

fe———"

man eating pizza

f(T2)
\d

man biting pizza
Ne(T)

C
N¢ — Ns ro T ZT eN(T) Ns.ri.0 — Augmented count
31?1’0 S r,o lfN ( ) @

Ne(T) = {T; : o(f(T), f(T3)) < €}
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Uncertain Evidence of Triplets

O A baseline measurement model produces probability of —
O subject (S), relationship (R), and object (0) of each triplet T in a scene graph.

O We denote these probabilities as Py, (S), Py, (0), and Py (R).
O We incorporate these probabilities into our proposed BN as uncertain evidence to perform posterior inference.

O Uncertain evidence is incorporated as virtual evidence.

T Within-triplet BN

Py (S)
Baseline c M 297 P(S) P(0)
node G Py(R) TP @\P (Rls-(i)/@

model
0 o
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Virtual Evidence of Within-Triplet BN

O Three virtual evidence nodes Z, Z,, Z, are created as child of their respective parents S, 0, and R.

O The conditional probabilities of these nodes are specified from their likelihood ratios

Q Likelihood ratio is obtained by scaling the biased measured probability by the biased marginal probability
O The scaling bolsters the probability of tail classes of head-driven baseline model.

Measured probability
P(S) P(0) /
P Pys(sn,
@ P(R|S,0) @ P(Zs=1|s1):..: P(Zs = 1|sp) = 11’;4(!(9'?1)) . ;is))
e \® Pl Par(o1) PM(Zn)\ Marginal probability
s P(Zo = 1‘01) DL P(ZO = 1‘0n) = P(Ol) . P(On)
P(Z|R)
@ l P(Zr - 1|T’1) e . P(Zr = 1|'rn) — PM(T]-) . PM(TTL)

&)

Virtual Evidence (VE) of triplet elements Specifying conditional probability of VE nodes
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Posterior inference of Within-Triplet BN

P(0) P(S,R.0|Zs=1,2Z,=1,2, = 1)
P(RIS,0) @ x P(Zs=1|S)P(S)P(Z, = 1|O)P(O)P(Z, = 1|R)P(R|S, O)
@ chzow:) _ PM(S)PM(O)I;M(g)P(RW» 0)
lP(zrlR)
@ 9O = argglfgg PSS B0 4y =1, A= 1,2z = 1]
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Overview of our proposed approach

= Within-Triplet Inference
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Constrained Optimization for Adjusting Inference Results

O Subject or object of any triplet may be shared by other triplets.
O Therefore, posterior inference of individual triplet may produce different results for the same subject or object.

 Need to perform a constrained optimization to resolve such conflicts.
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Constrained Optimization for Adjusting Inference Results

O Two-step iterative optimization. At each iteration, we perform -
0 Object updating: refine each object node separately keeping all other nodes fixed.

O Relationship updating: refine each relationship node separately keeping all other nodes fixed.

© @ @ _©

Object Updating Relationship Updating
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Evaluation Metric
U Recall R@K

O M; — Total matched triplets in image I in top-K predicted triplets
O G; — Total ground truth triplets in image I

- 1y M
O R@K = N ¥, G
J Mean Recall nR@K

Q M;r - Total matched triplets of relation R in image I in top-K predicted triplets
Q G;r — Total ground truth triplets of relation R in image /

M
D mR@K - N ZR NI ZI GII::
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Performance Comparison from Baseline Model

O Recall is decreasing

O Mean Recall is increasing

UNE 18-22, 2023

Recall and Mean Recall @K

DS  Method

PredCls SGCls SGDet
R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100
VG VCTree® [29] 65.46/67.18 15.36/ 16.61 44.15/45.11 9.17/9.83 29.94/ 32.57 6.21/ 6.96
Inf-VCTree 59.50/60.97 | 28.14/30.72 17 40.69/41.55 | 17.31/19.401 27.74/30.10] 10.40/11.86 1
GOA VCTree® [29] 68.83/70.14 22.07/23.01 35.04/ 35.58 10.59/ 10.97 27.21/28.79 7.03/7.75

Inf-VCTree 62.80/64.05 | 39.44/41.63 17 32.23/32.80) 19.18/20.03 1

25.10/26.45 |

13.57/15.12 1
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Performance Comparison from Baseline Model

descending order of their frequencies
‘behind’ 1s dropping

O Relationships are ordered with

1 head classes such as ‘on’, ‘near’, ‘has’,
[ tail classes are improving

U Typical behavior in SGG debiasing work
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(Baseling) —

Performance Comparison with SOTA debiasing methods

Method Re-train Rek mREK
@50/100  @50/100
VCTree [29] - 65.5/67.2 15.4/16.6
Unb-VCTree | 2] No 47.2/51.6  25.4/28.7
DLFE-VCTree [1]  Yes 51.8/53.5 25.3/27.1
NICE-VCTree [13]  Yes 55.0/56.9  30.7/ 33.0
Inf-VCTree (Ours) No 59.5/61.0  28.1/30.7

O Other debiasing methods
O decrease the R@K significantly since they do not
incorporate the within-triplet prior.
O require re-training of the baseline models.

O Our method
O hurts the R@K less brutally.
O requires no re-training of the baseline model.
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Conclusion

L We debiased the predicted scene graphs with minimal hurting of the head classes
O We incorporated within-triplet prior in debiasing step through a Bayesian Network
O Triplet evidence is incorporated into BN with virtual evidence
[ Possible conflicts in subject and object are resolved with a constraint optimization step
L Our method
O improves the tail classes with minimal hurting of the head classes

O requires no re-training of the baseline models
[ can be incorporated as a plug-and-play module
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