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Overview

* Problem: Unsupervised domain adaptation for object detection
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Overview

* Problem: Unsupervised domain adaptation for object detection
 Solution: Contrastive Mean Teacher (CMT)
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Why do we need unsupervised domain adaptation for
object detectors?



Why do we need unsupervised domain adaptation for
object detectors?

Challenge 1: Object-level Iabels are expensive or even unavailable

Image-level annotation
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Why do we need unsupervised domain adaptation for
object detectors?

Challenge 1: Object-level labels are expensive or even unavailable

Object-level annotation

e (Category of each object
* Bounding box
* Pixel-level mask




Why do we need unsupervised domain adaptation for
object detectors?

Challenge 2: Real-world applications may face a huge domain gap or
different data distribution

Example: Weather change




Recent Paradigm: Vlean-teacher Seli-training
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Contrastive Mean Teacher (CMT)
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New State of the Art
on Cityscapes - Foggy Cityscapes

Method person rider car truck bus train motor bike mAP
Source 279 334 404 121 232 10.1 20.7 309 24.8
Oracle 412 49.1 61.6 326 566 490 379 424 46.3
PDA (WACV’20) 360 455 544 243 441 258 29.1 359 36.9
ICR-CCR (CVPR’20) 329 438 492 272 364 364 303 346 37.4
PT (ICML’22) 432 524 634 334 56.6 378 413 487 47.1
PT (ICML’22) + CMT (Ours) | 45.6 55.1 66.5 340 594 424 439 474 | 493 (+2.2)
AT (CVPR’22) 46.3 559 643 385 61.1 393 408 523 49.8
AT (CVPR’22) + CMT (Ours) | 47.0 557 645 394 632 519 403 53.1 | 51.9 (+2.1)
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Analytical Experiment and Ablation Study

Benefit of CMT is more pronounced Both our techniques improves
when pseudo-labels are noisier object-level contrastive learning
>2 1 — AT 1) Building contrastive pairs using predicted classes
AT + CMT (Ours) . .
% 50 - 2) Learning from features of multiple scales
&
£ 48 Class-based Multi-scale Gain
£ Method Contrast Features mAP w.r.t. PT
T PT - - 47.1 -
= 44 X X 478 407
45 PT + CMT X v 48.2 +1.1
0.0 0.2 0.4 0.6 0.8 1.0 (Ours) v/ X 43.7 +1.6
Injected noise in pseudo-labels 4 4 49.3 +2.2
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e Real-world challenges call for domain adaption for
object detection
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* We align and into one unified
framework Contrastive Mean Teacher (CMT)

* Our CMT achieves new state-of-the-art performance on various
benchmarks including Cityscapes - Foggy Cityscapes



