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Overview

• Problem: Unsupervised domain adaptation for object detection
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Overview

• Problem: Unsupervised domain adaptation for object detection
• Solution: Contrastive Mean Teacher (CMT)

3

Teacher
Detector

Student
Detector

Target-domain 
Image

Strong 
Augmentation

Weak 
Augmentation

Predictions Pseudo-labels

Detection Loss

EMA

Mean-teacher Self-training

Momentum 
Encoder

Online 
Encoder

Unlabeled Image

Augmentation 
#1

Augmentation 
#2

Query Key

Contrastive Loss

EMA

Momentum Contrast



Why do we need unsupervised domain adaptation for 
object detectors?
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Why do we need unsupervised domain adaptation for 
object detectors?

Challenge 1: Object-level labels are expensive or even unavailable

Image-level annotation

"Dog"
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Challenge 1: Object-level labels are expensive or even unavailable

Object-level annotation

• Category of each object
• Bounding box
• Pixel-level mask
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Why do we need unsupervised domain adaptation for 
object detectors?



Challenge 2: Real-world applications may face a huge domain gap or 
different data distribution

Example: Weather change
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Why do we need unsupervised domain adaptation for 
object detectors?



Recent Paradigm: Mean-teacher Self-training
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Leads to state-of-the-art
domain adaptive object detectors
• Adaptive Teacher (CVPR'22)
• Probabilistic Teacher (ICML'22)



Aligning Mean Teacher and Momentum Contrast
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Contrastive Mean Teacher (CMT)
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New State of the Art
on Cityscapes → Foggy Cityscapes
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Analytical Experiment and Ablation Study
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Benefit of CMT is more pronounced 
when pseudo-labels are noisier 

Both our techniques improves
object-level contrastive learning

1) Building contrastive pairs using predicted classes
2) Learning from features of multiple scales
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Fixing mis-
classification
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Fixing missed 
detection



Take-away

• Real-world challenges call for unsupervised domain adaption for 
object detection

• We align Mean Teacher and Momentum Contrast into one unified 
framework Contrastive Mean Teacher (CMT)

• Our CMT achieves new state-of-the-art performance on various 
benchmarks including Cityscapes → Foggy Cityscapes
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Code available here:


