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Motivation




Motivation

AP at iou 0.75 for class person = 100.0
#false-positives = 17
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Hedged predictions
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Mitigating hedging

Inspiration from bottom-up methods.

Semantic Sorting: re-rank instances based on semantic
masks.

Semantic NMS: Remove instances that do not have
“occupancy” from semantic mask.

Algorithm 1: Pseudocode for semantic sorting and
NMS, given instances D with category c; and
confidence 7, threshold thr, semantic masks M

Data: { Dy, ck, Tk pr=1..N> {Mc}e=1..c
Result: Boolean array keep indicating preservation
QL ASLANCCS
fork=1...Ndo
pr < precision(Dy, M., );
tou « IoU(Dy, M., );

Tk + T + pr + (1 — dou);

end
D,c,7) =sort(D,c,7); // sort by decreasing 7
ork=1...Ndo
overlap « precision(Dy, M., );
if overlap > thr then

’ keep|k] = True;

M, =M. \Di

else

| keeplk] = False
end

end




Qualitative results




Let’s dive deeper!



A toy example

AP = 0.81 AP = 0.90
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Defining hedging

AP at iou 0.75 for class person = 100.0
#false-positives = 17
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Motivation




A closer look

AP at iou 0.75 for class person = 100.0 AP at iou 0.75 for class person = 100.0
#false-positives = 17 #false-positives = 0
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How to distinguish this?



Shouldn’t NMS be clearing this up?
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Categorical hedging




Quantifying hedging



Duplicate confusion (DC)

What is the average overlap between any two instances?
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Duplicate confusion (DC)




Duplicate confusion (DC)
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Duplicate confusion (DC)
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Naming Error (NE)
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Naming Error (NE)

= 0.67

#mismatch = 1

I M = different classes = unrevealed class

g(D) — arg max; IOU(D]"Gi) , Max; IOU(Dj, Gi) > 0.5
’ -1 , otherwise
1 N
NE =5 > I[ip, # lg,]



Other metrics
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One Metric to Measure them All: Localisation
Recall Precision (LRP) for Evaluating Visual
Detection Tasks

Kemal Oksuz' ) , Baris Can Cam

Abstract—Despite being widely used as a performance measure

, Sinan Kalkan! () , and Emre Akbas!

for visual detection tasks, Average Precision (AP) is limited in ()

reflecting localisation quality, (i) interpretability and (i) robustness to the design choices regarding its computation, and its applicability

1o outputs without confidence scores. Panoptic Quality (PQ), a me:

asure proposed for evaluating panoptic segmentation (Kirillov et al.,

2019), does not suffer from these limitations but is limited to panoptic segmentation. In this paper, we propose Localisation Recall
Precision (LRP) Error as the average matching error of a visual detector computed based on both its localisation and classification
qualities for a given confidence score threshold. LRP Error, initially proposed only for object detection by Oksuz et al. (2018), does not
suffer from the aforementioned limitations and is applicable to al visual detection tasks. We also introduce Optimal LRP (oLRP) Error
as the minimum LRP Error obtained over confidence scores to evaluate visual detectors and obtain optimal thresholds for deployment.
We provide a detailed comparative analysis of LRP Error with AP and PQ, and use nearly 100 state-of-the-art visual detectors from
seven visual detection tasks (i.e. object detection, keypoint detection, instance segmentation, panoptic segmentation, visual
relationship detection, zero-shot detection and generalised zero-shot detection) using ten datasets to empirically show that LRP Error
provides richer and more discriminative information than its counterparts. Code available at: hitps://github.comkemaloksuz/LRP-Error.

Index Terms—Localisation Recall Precision Average Precision Panoptic Quality Object Detection Keypoint Detection Instance
Panoptic

Metric Threshold.

1 INTRODUCTION
Many vision applications require identifying objects and
object-related information from images. Such identification
can be performed at different levels of detail, which are
addressed by different detection tasks such as “object detec-
tion” for identifying labels of objects and boxes bounding
them, “keypoint detection” for finding keypoints on objects,
“instance " for identifying the classes of objects
and localising them with masks, and “panoptic segmenta-
tion” for classifying both background classes and objects by
providing detection ids and labels of pixels in an image.
Accurately evaluating performances of these methods is
crucial for developing better solutions.

1.1 Important features for a performance measure
To facilitate our analysis, we define three important features
for performance measures of visual detection methods:
Completeness. Arguably, three most important perfor-
‘mance aspects that an evaluation measure should take into
account in a visual detection task are false positive (FP) rate,
false negative (FN) rate and localisation error. We call a
performance measure “complete” if it precisely takes into
account all three quantities.

Good at counti

+

strengths and weaknesses of the detector being evaluated.
To provide such insight, the evaluation measure should
ideally comprise interpretable components.

Practicality. Any issue that arises durmg practical use
of ap measure dimi This
could be, for example, any dlscrepancy between the well-
defined f the ion measure
and its actual apphcalmn in pmcuce, or any shortcoming
that limits the applicability of the measure to certain cases.

1.2 Overview of Average Precision and Its Limitations
Today “average precision” (AP) is the de facto standard
for evaluating performance on many visual detection tasks
and competitions (1], [2], [3], [4], [5], [6], [7). Computing
AP for a class involves a set of detection results with confi-
dence scores and a set of ground-truth items (e.g. bounding
boxes in the case of object detection). First, detections are
matched to ground-truth items (GT) based on a predefined
spatial overlap criterion such as Intersection over Union
(IoU)! being larger than 0.50. Each GT can only match one
detection and if there are multiple detections that satisfy
the overlap criterion, the one with the highest confidence
score is matched. A detection that is matched to a GT is

crweebad an a ban e FTDV Tlomanbobond Anbont

ng FPs, FNs.

This CVPR paper

Except for this watermark, it is identica

he Open Access version, provided by the Computer Vision Foundatio

to the version available on IEEE Xplore

A Benchmark Dataset and Evaluation Methodology for
Video Object Segmentation

F. Perazzi'? J.Pont-Tuset' B.McWilliams®
'ETH Zurich

Abstract

Over the years, datasets and benchmarks have proven
their fundamental importance in computer vision research,
enabling targeted progress and objective comparisons in
many fields. At the same time, legacy datasets may impend
the evolution of a field due to saturated algorithm perfor-
mance and the lack of contemporary, high quality data. In
this work we present a new benchmark dataset and evalu-
ation methodology for the area of video object segmenta-
tion. The dataset, named DAVIS (Densely Annotated Video
Segmentation), consists of fifty high quality, Full HD video
spanning multiple of common video
object ion chall such as ions, motion-
blur and appearance changes. Each video is accompanied
by densely annotated, pixel-accurate and per-frame ground
truth segmentation. In addition, we provide a comprehen-
sive analysis of several state-of-the-art segmentation ap-
proaches using three complementary metrics that measure
the spatial extent of the segmentation, the accuracy of the
silhouette contours and the temporal coherence. The results
uncover strengths and weaknesses of current approaches,
opening up promising directions for future works.

1. Introduction

L. Van Gool' M. Gross"?  A. Sorkine-Hornung?
?Disney Research

Figure 1: Sample sequences from our dataset, with ground
truth segmentation masks overlayed. Please refer to the sup-
plemental material for the complete dataset.

and object recognition, which have experienced remark-
able progress in the recent years. A key factor boot-
strapping this progress has been the availability of large
scale datasets and benchmarks [17, 26, 29, 42]. This is in
stark contrast to video object segmentation. While sev-
eral datasets exists for various different video segmentation
tasks [1,4,5, 15, 8,41,44,46,47], none of them
targets the spcclﬁc {ask of video object segmentation.

To date, the most widely adopted dataset is that of [47],

Video object segmentation is a binary labeling prob- which, however, was originally proposed for joint segmen-
lem aiming to separate foreground object(s) from the back-  tation and tracking and only contains six low-resolution
ground region of a vidco. A pixcl patio-temporal  Video which are not representative anymore for

ition of the video is i m several applica- the |lmige qllallly alld rcsollllmn encountered in today’s
video Asa evalua-

tions including, among others, action recognition, object
tracking, video summarization, and rotoscoping for video
editing. Despite remarkable progress in recent years, video
object ion still remains a ing problem and
‘most existing approaches still exhibit too severe limitations
in terms of quality and efficiency to be applicable in practi-
cal applications, e.g. for processing large datasets, or video

tions performed on such datasets are likely to be overfit-
ted, without reliable indicators regarding the differences be-
tween indivi video and the
real performance on unseen, more contemporary data be-
comes difficult to determine [¢]. Despite the effort of some
authors to augment their evaluation with additional datasets,

Evaluates mask quality.



Mitigating hedging



Semantic Sorting and NMS

Algorithm 1: Pseudocode for semantic sorting and
NMS, given instances Dj with category c; and
confidence 7, threshold thr, semantic masks M

Data: { Dy, ck, Tk br=1..N> {Mc}e=1..c

Result: Boolean array keep indicating preservation
of instances

fork=1...Ndo

pr < precision(Dy, M., );

tou + IoU(Dy, M., );

Tk + Tk + pr + (1 — tou);

lend
D,c,7) =sort(D,c,7); // sort by decreasing 7
ork=1...Ndo
overlap « precision(Dy, M., );
if overlap > thr then

’ keeplk] = True;

Mck —_— Mck \Dk

else

| keeplk] = False
end
end

Time complexity = O(n)



Experiments

Toy experiment (isolate the spatial hedging problem)

Model CoordConv APs Flos LRP LRPuo

SOLOv2 X 96.87 047 79.65 16.55
SOLOv2 4 96.90 046 79.87 16.06
Ours X 98.01 099 3346 15.87
Ours 4 98.01 099 3337 15.75




Experiments

Performance on COCO dataset (Ours = SOLOv2 + Semantic NMS and Sorting)

K elibodi Spatial hedging Mask quality Category hedging AP1 | LRP|
DC| LRPr| F11 | b-IoUT LRPLoc] NE|
ResNet-50-FPN
Mask-RCNN 76.1 80.3 384 49.6 20.6 0.63 37.2 88.4
SOLOv2 64.1 90.4 20.8 49.8 20.6 1.13 37.6 944
HTC 62.3 93.9 233 49.9 204 2.19 37.4 96.3
QuerylInst (100 queries) | 14.9 95.1 17.1 16.9 20.6 2.78 375 97.1
CondInst 144.1 88.1 30.7 50.2 20.5 1.35 37.4 92.9
Ours 2.0 78.1 433 50.5 20.1 0.94 34.7 87.6
ResNet-101-FPN
Mask-RCNN 62.6 71.5 41.7 | 504 20.0 0.56 38.6 86.6
SOLOv2 63.1 89.5 21.6 |50.8 20.0 1.05 39.0 93.7
HTC 483 92.7 264 | 51.1 20.0 1.98 39.6 95.5
Querylnst (100 queries) | 10.9 | 94.7 199 | 17.0 19.6 2.64 41.0 96.7
CondlInst 126.2 | 86.1 33.5 | 509 20.2 1.17 38.5 91.6
Ours 1.9 70.6 459 | 514 19.2 0.57 37.4 834

|| Indicates best result || Indicates second best result



Experiments

Ablation of different NMS techniques.

Method NMS Spatial hedging Mask quality Category hedging AP? LRP|
DC| LRPrr| FI17 b-IoUT LRPrec| NE|

SOLOv2  Matrix 55.6 92.61 18.46 43.0 22.43 1.93 26.34 95.88

SOLOv2 Mask 16.0 88.52 29.82 429 22.13 1.56 26.16 93.54

Ours Matrix 63.5 91.99 17.87 44.1 22.44 1.68 28.15 95.56

Ours Mask 17.4 86.76 30.82 44.3 22.12 1.33 27.94 92.60

Ours Semantic | 2.3 79.29 36.05 44.7 21.84 0.98 26.37 89.25

[ "] Indicates best result

[ ] Indicates second best result



Results
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Results




Summary

mAP:
*penalizes high confidence FPs
«doesnt penalize trailing low-confidence FPs "\
« can reward “accidental TPs” = promotes hedging @

Need to capture and quantify this behavior!

DC: Confidence-weighted overlap of the network outputs @
NE: interclass labelling confusion %4

F1, LRP: counting metrics (FPs, FNs) T2 3]

Proposed Semantic NMS+Sorting provides a great tradeoff!
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