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Problem definition

Input (4D radar point clouds) Output (point-level scene flow)
Perspective view Bird’s eye view

Given consecutive point clouds from 4D radar, we learn to
estimate point-level scene flow using cross-modal supervision.



Motivation

Fact: self-driving cars today are equipped with heterogeneous sensors.
Insight: such co-located perception redundancy can be used to provide supervision
cues that bootstrap 4D radar scene flow learning.
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Cross-modal supervised learning pipeline
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Qualitative results

® Scene Flow Estimation

* Ego-motion Estimation

Image - Projected Radar Points BEV - Estimated Scene Flow
: Trajectory
1201— Ground Truth === Ours
ICP
_ 80;
=
> 40
0
, . 0 40 80 120 160
* Motion Segmentation
: : 75
Image - Projected Radar Points BEV-Ours = Ground Truth —  Ours
. ICP
50+
(5
> 251
0-

-75 =50 =25 O 25 50
X [m]




Thanks for watching the quick preview!



Problem definition

Input (4D radar point clouds) Output (point-level scene flow)
Perspective view Bird’s eye view

Given consecutive point clouds from 4D radar, we learn to
estimate point-level scene flow.



Point Cloud Scene Flow

Source Target T J J

point cloud point cloud

Warped source

Scene Flow point cloud

®* Represent the 3D inter-frame displacement of each source point
* Induced by the motion of both the ego-vehicle and ambient objects



Downstream tasks
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4D Automotive Radar

Emerging sensor technology in the automotive industry

Robust to adverse weather and poor illumination conditions

4D imaging: 3D position + 1D doppler velocity measurement
Radar-on-a-chip: low-cost (vs. LiDAR), small size and lightweight

(d) rain (e) sleet (f) light snow (g) heavy snow

ARBE 4D RADAR

K-RADAR DATASET



Challenges

The acquisition of scene flow annotations are costly. In literature, there is a trade-
off between annotation efforts and model performance.

Strategy Methods Supervision Annotation efforts  performance
Self-supervised JGWTE, SLIM, RaFlow None None low
Weakly-supervised W5sRSEF, Dong et al. GT BG/FG mask medium medium
Fully-supervised FLOT, FlowStep3D GT Scene flow high high

How to overcome such trade-off, i.e. getting a high
performance with low or no annotation efforts?



Challenges

Radar point clouds suffers from sparsity and noise, which further complicate the
scene flow annotation and makes self-supervised based methods unfeasible.

R—
e

- C . ’
x ¥ b S : ‘-g i
> A 5 3 ; D - L]
A . N B X & - _‘. :a"n
ot . . + o FUA
. > p » 9
S
. L S .
s AN e
. 3 .
<% N “
\j
.
\

+

g
*”Qé Ghost

"&?—af‘r

1=

T Ll . “
T L l—— TR S v~

o

LiDAR vs. RADAR MULTI-PATH EFFECT



Motivation

Fact: self-driving cars today are equipped with heterogeneous sensors.
Insight: such co-located perception redundancy can be used to provide supervision
cues that bootstrap 4D radar scene flow learning.
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Motivation

Example: odometry consistency * Example: perspective consistency

Radar scene flow Radar scene flow

Estimated
odometry

T Constrain

|

Observed
odometry

GPS/INS Camera
/ Optical flow

l Constrain




Motivation

* Retrieving accurate supervision signals from co-located sensors
and effectively use them are non-trivial. For example:

: Depth-unaware perspective projection
potentially incurs weaker constraints to
D S e the scene flow of far points.
Research Question:

/ —e / / ﬁ\. 5?461‘
How to retrieve useful cross-modal supervision cues and

U U apply them to bootstrap 4D radar scene flow learning?




Contribution

The first 4D radar scene flow learning using cross-modal supervision from co-
located heterogeneous sensors on an autonomous vehicle.

A pipeline that consists of a multi-task mode! architecture and loss functions to
using multiple cross-modal constraints for model training.

State-of-the-art performance of the proposed CMFlow method was demonstrated
on a public dataset and show its effectiveness in downstream tasks as well.



Cross-modal supervised learning pipeline
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Model architecture
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Takeaway:

* Two-stage fashion: blue/orange block colors for stage 1/2

* Multi-task model: scene flow, motion segmentation, ego-motion estimation
The flow vectors of static points are only caused by the radar’s ego-motion,
we can regularize them with the more reliable rigid transformation



Cross-modal supervision
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Cross-modal supervision

Ego-motion loss:
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Takeaway:
* The odometry can be used to explicitly supervise the rigid transformation and
implicitly constrain the initial and final scene flow output



Cross-modal supervision

Motion segmentation loss:
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Moving and static points are supervised separately to
balance their impact.



Cross-modal supervision
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Takeaway:
* We supervise foreground points scene flow with LiDAR 3D MOT Results
([ J

In the optical loss, we take the point-to-ray distance as the training objective, which is more
insensitive to points at different ranges.



Main results

Method Sup. EPE [m]] AccST AccRT RNE [m]/ MRNE [m]| SRNE [m]|
ICP [4] None 0.344 0.019 0.106 0.138 0.148 0.137
Graph Prior* [33] None 0.445 0.070 0.104  0.179 0.186 0.176
JGWTF* [31] Self 0.375 0.022 0.103  0.150 0.139 0.151
PointPWC [52] Self 0422 0.026 0.113  0.169 0.154 0.170
FlowStep3D [21] Self 0.292  0.034 0.161 0.117 0.130 0.115
SLIM* [2] Self 0.323 0.050 0.170  0.130 0.151 0.126
RaFlow [Y] Self 0.226 0.190 0.390 0.090 0.114 0.087
CMFlow Cross 0.141  0.233 0.499  0.057 0.073 0.054
CMFlow (T) Cross 0.130 0.228 0.539 0.052 0.072 0.049

Takeaway:
®* The state-of-the-art performance compared with baselines that also demand no annotation efforts
* The performance is further improved when applying the temporal information (i.e., T)



Breakdown results

| O L C EPE[m]} AccST AccRt  RNE[m]}

(a) 0.228 0.184 0.392 0.091
(b) v 0.161 0.203 0.442 0.065
(c) v 0.145 0.228 0.482 0.058
(d) v v 0.159 0.216 0.458 0.064
(e) v v 0.141 0.233 0.499 0.057

|L(seg) L (flow) EPE [m]] AccST AccRT RNE [m]]

(a) 0.159 0.216 0.458 0.064

b)) | v 0.156 0221 0467  0.063

(c) v 0.152 0217 0477  0.061

@| v v 0.141 0223 0499  0.057
Takeaway:

* All modalities contribute to our method, and the odometer leads to the biggest performance gain.
* Due to their noisy labels, the gains brought by camera and LIiDAR are smaller than that of odometer.



Impact of the amount of unannotated data
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Takeaway:

®* The performance of CMFlow improves by a large margin by using extra unannotated training data.
* After adding only 20% extra samples, CMFlow can already outperform PV-RAFT trained with less
annotated samples.



Scene flow demo

Image - Projected Radar Points BEV - Estimated Scene Flow BEV - GT Scene Flow

Color of points in the BEV image represents the magnitude and direction of scene flow vectors.



Subtask — motion segmentation evaluation
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Takeaway:

* Two ingredients of the pseudo motion segmentation label contributes to our performance
improvement on motion segmentation.



Motion segmentation demo

Image - Projected Radar Points BEV - Ours BEV - GT

In the BEV images, blue/orange denotes static and moving points respectively.



Subtask — ego-motion estimation
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Ego-motion demo

Trajectory Estimated Scene Flow
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Thanks for watching the presentation!
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