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| Background

High-resolution images have become ubiquitous!
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| Background

Higher resolutions deliver better accuracy but also increase computation cost!
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| Activation Pruning

Sparse high-resolution features are better than dense low-resolution ones.
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| SparseViT — Sparse Vision Transformers

Step |. Window activation pruning (with non-uniform sparsity)
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| SparseViT — Sparse Vision Transformers

Step Il. Sparsity-aware adaptation

Goal: Assess the model’s accuracy under different activation sparsity settings both efficiently and accurately.
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As the original model is trained with only dense activations, we improve its sparsity awareness by
finetuning it with randomly sampled layerwise activation sparsity configurations at each training iteration.
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| SparseViT — Sparse Vision Transformers

Step lll. Resource-constrained search

Goal: Discover the optimal layerwise activation sparsity configuration under a given latency budget.
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We enforce the latency constraint using rejection sampling Search Epoch
(repeated resampling until satisfaction). Evolutionary search is sample-efficient!
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| Results
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| Visualizations

SparseViT learns to prune irrelevant background windows
while retaining informative foreground ones!
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