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Background
Point cloud deep learning is widely used in real-world applications
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Augmented Reality 
/ Mixed Reality

Autonomous 
Driving

Data: 3D Point Cloud Applications
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Background
State-of-the-art point cloud models are based on sparse convolution
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Background
Sparse convolution requires specialized system support to run on GPUs
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TorchSparse: Efficient Point Cloud Inference Engine [Tang et al., MLSys 2022]

from torch import nn
from torchsparse import nn as tsnn
from torchsparse import SparseTensor

# Model definition
model = nn.Sequential(
  tsnn.Conv3d(4, 16, 3, stride=2, padding=1),
  tsnn.BatchNorm(16),
  tsnn.ReLU(True),
).cuda()

# Tensor definition
x = SparseTensor(feats, coords).cuda()

# Forward and backward pass
y = model(x)
loss = criterion(y, ...)
loss.backward()

Installation: pip install --upgrade git+https://github.com/mit-han-lab/torchsparse.git
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Point Cloud Transformers
Achieve comparable accuracy but lag far in latency (3-4X slower)
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Point Cloud Transformers
Achieve comparable accuracy but lag far in latency (3-4X slower)
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Global PCTs: Apply MHSA globally across the entire point cloud.

The runtime of global PCTs grows quadratically as the number of points grows. 
The model takes almost 1 second to run with 32k input points.

Guo et al., “PCT: Point Cloud Transformer”, CVM 2021
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The number of points varies across 
windows and differs by two orders 

of magnitude!

Window PCTs: Apply MHSA to a set of non-overlapping windows.

Window PCTs suffer from the padding and 
partitioning overhead due to the 
unbalanced workload across windows.

Fan et al., “Embracing Single Stride 3D Object Detector with Sparse Transformer”, CVPR 2022
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FlatFormer: Flattened Window Attention
Equal-size grouping trades spatial proximity for computational regularity
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FlatFormer: Flattened Window Attention
Window-based sorting preserves geometric locality after flattening
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Efficient Implementation
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FlatFormer

+Flash Attn.

+Packed MM

+Fused FFN

+Drop Last 7.1 ms

7.6 ms

9.2 ms

11.9 ms

20.5 ms

CenterPoint

SST

SST (Center) 34.3 ms

52.2 ms

16.0 ms

1.7X Faster

2.2X Faster

2.7X Faster

2.9X Faster

Fuse all attention operators into one GPU kernel.

Pack linear projections for Q, K and V into a batched one.

Fuse the linear and activation (GeLU) in FFN (with Triton).

Drop the last residual group (if any) for better regularity.

FlatFormer can benefit from existing system optimizations for transformers
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Results: 3D Object Detection on Waymo
FlatFormer closes the latency gap between PCTs and SpConv-based models
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Analysis: Grouping & Attention
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Equal-size grouping is mostly spatially local.
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Deployment on Edge GPUs
First point cloud transformer that achieves real-time performance on edge GPUs!
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Real Time 
(>10 FPS)

Frames Per Second (FPS)

NVIDIA Jetson

AGX Orin
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