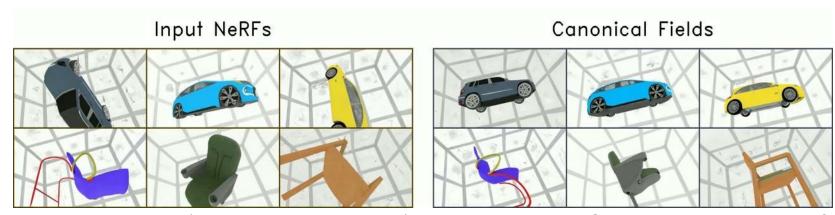
Canonical Fields: Self-Supervised Learning of Pose-Canonicalized Neural Fields

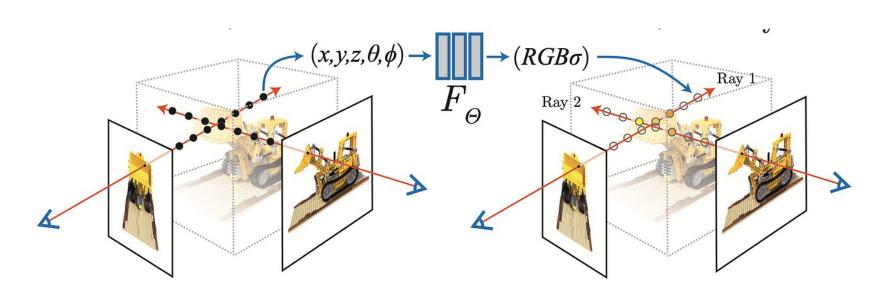
CVPR 2023 (Highlight) TUE-PM-035



Rohith Agaram¹, Shaurya Dewan¹, Rahul Sajnani², Adrien Poulenard³, Madhava Krishna¹, Srinath Sridhar²

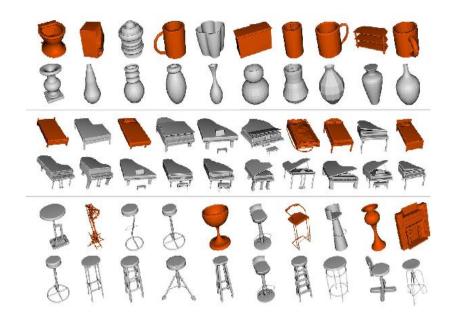
BROWN

Neural Fields



Nerf (ECCV 2020)

Previous Methods

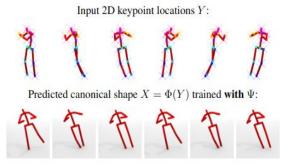


ShapeNet

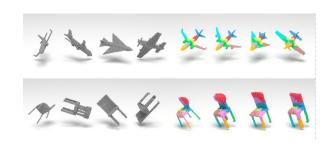
ModelNet40

Previous Methods

Images C3dpo (ICCV 2019)

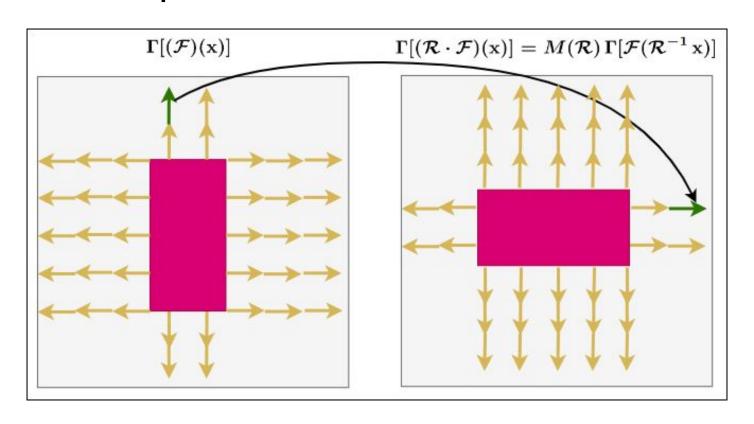


Keypoints
Canonical 3D
Deformer Maps
(NeurIPS 2020)

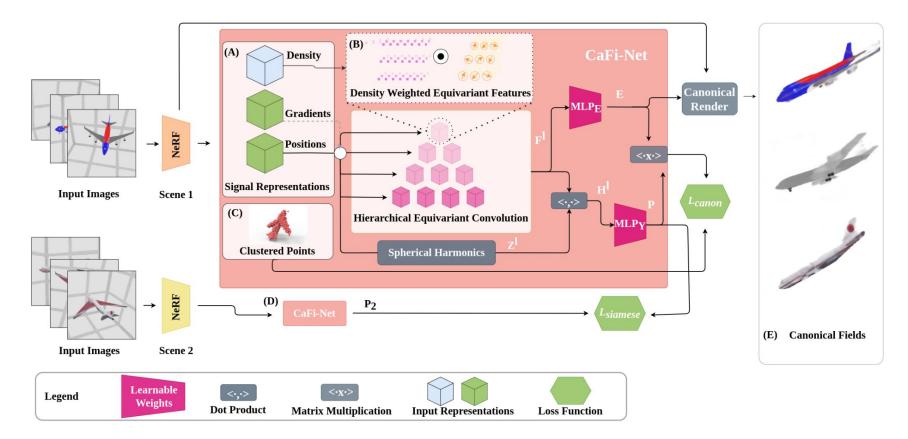


Pointclouds
Condor (CVPR 2022)

Equivariance in Vector Fields

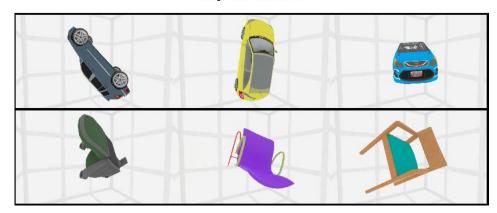


Our Method

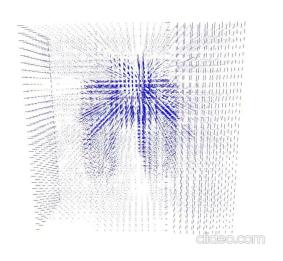


Dataset

Input NeRFs

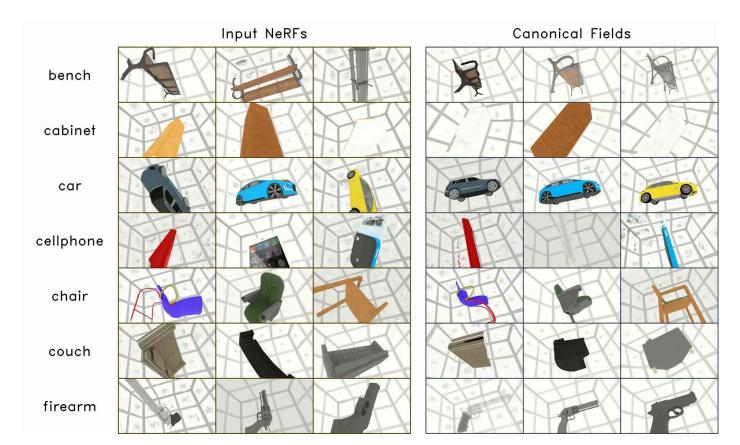


NeRF Renderings

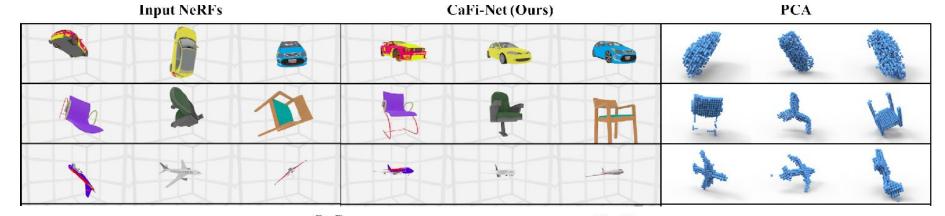


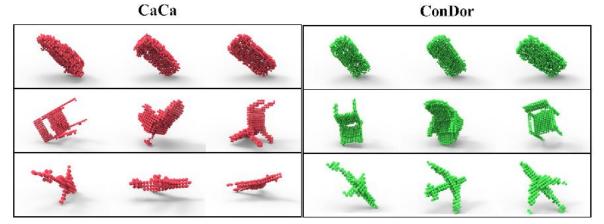
Gradient Field

Results



Comparisons CaFi-Net (Ours)





Design Choices

Category	xy	z vs. Gradient Signals
	xyz	Gradient signal
Ground Tr	uth Equiva	ariance Consistency (GEC)
bench	2.17	3.26
cellphone	1.84	1.43
chair	1.72	0.94
plane	2.07	0.66
Average	1.95	1.57
Instance-L	evel Consis	stency (IC)↓
bench	2.04	2.62
cellphone	1.6	1.28
chair	1.4	0.81
plane	1.88	0.36
Average	1.73	1.26
Category-1	Level Cons	istency (CC)↓
bench	1.99	2.77
cellphone	1.49	1.26
chair	1.52	0.75
plane	1.9	0.63
Average	1.72	1.35

(a) Choice of Signal Representation - Canonicalization metrics for using Gradients vs. xyz locations as input signal. Gradients capture the object surface that help in canonicalization.

Category	Loca	Local Average Density	
	w/o	w	
Ground Tr	uth Equivaria	ance Consistency (GEC)	
bench	3.26	3.38	
cellphone	1.43	1.63	
chair	0.94	1.3	
plane	0.66	0.64	
Average	1.57	1.73	
Instance-L	evel Consister	ncy (IC)↓	
bench	2.62	2.72	
cellphone	1.28	1.63	
chair	0.81	2.64	
plane	0.36	0.39	
Average	1.26	1.85	
Category-I	evel Consiste	ency (CC)↓	
bench	2.77	2.82	
cellphone	1.26	1.54	
chair	0.75	1.07	
plane	0.63	0.51	
Average	1.35	1.49	

(b) Weighing Equivariant Signals by Local Average Density deteriorates the performance by smoothing out important details of the shape. We show canonicalization with (w) and without (w/o) weighing by the local averaged density.

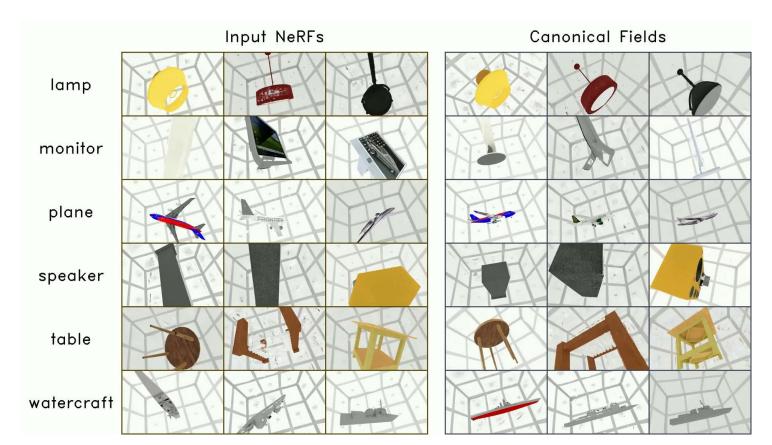
Category	Siamese Training		
	w/o siamese	with siamese	
Ground Tr	uth Equivariance	e Consistency (GF	
bench	3.52	3.26	
cellphone	1.61	1.43	
chair	1.02	0.94	
plane	1.31	0.66	
Average	1.86	1.57	
Instance-L	evel Consistency	(IC)↓	
bench	2.73	2.62	
cellphone	1.3	1.28	
chair	0.82	0.81	
plane	1.1	0.36	
Average	1.48	1.26	
Category-I	Level Consistency	' (CC)↓	
bench	2.95	2.77	
cellphone	1.44	1.26	
chair	0.83	0.75	
plane	1.26	0.63	
Average	1.62	1.35	

(c) **Siamese Training** improves performance on all canonicalization metrics on average. We show canonicalization performance *with siamese* and without (w/o) siamese training. The average of Ground Truth Equivariance Consistency *GEC* metric reduces to 1.57 from 1.86

Limitations

Failure Cases

Results



Acknowledgements

This work was supported by AFOSR grant FA9550-21-1-0214, NSF grant CNS-2038897, an AWS Cloud Credits award, NSF CloudBank, and a gift from Meta Reality Labs. We thank Chandradeep Pokhariya and Ishaan Shah.

Thank You