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Previous Methods
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Previous Methods
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Equivariance in Vector Fields

L[(F)(x)] L[(R-F)(x)] = M(R)T[F(R™" x)]
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Our Method
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Input NeRFs
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https://docs.google.com/file/d/1Th_BGnuoDArCRD7YtezkHyVJqNbv9bLP/preview

Results
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Design Choices

Category

zryz vs. Gradient Signals

Category | Local Average Density

Category | Siamese Training

| TYZ

Gradient signal

| wlo w

| w/o siamese with siamese

Ground Truth Equivariance Consistency (GEC)|

Ground Truth Equivariance Consistency (GEC)|

Ground Truth Equivariance Consistency (GEC)|

bench 2.17 3.26 bench 3.26 3.38 bench 3.52 326
cellphone | 1.84 143 cellphone | 1.43 1.63 cellphone 1.61 143
chair 1.72 0.94 chair 0.94 1.3 chair 1.02 0.94
plane 2.07 0.66 plane 0.66 0.64 plane 1.31 0.66
Average | 1.95 1.57 Average | 1.57 1.73 Average |  1.86 157
Instance-Level Consistency (IC)| Instance-Level Consistency (IC)| Instance-Level Consistency (IC)|

bench 2.04 2.62 bench 2.62 292 bench 2.73 2.62
cellphone | 1.6 1.28 cellphone | 1.28 1.63 cellphone 1.3 1.28
chair 14 0.81 chair 0.81 2.64 chair 0.82 0.81
plane 1.88 036 plane 0.36 0.39 plane 1.1 0.36
Average | 1.73 1.26 Average | 1.26 1.85 Average | 1.48 1.26
Category-Level Consistency (CC)| Category-Level Consistency (CC)| Category-Level Consistency (CC)|
bench 199 277 bench 2.71 2.82 bench 2.95 2.77
cellphone | 1.49 1.26 cellphone | 1.26 1.54 cellphone 1.44 1.26
chair 1.52 0.75 chair 0.75 1.07 chair 0.83 0.75
plane 1.9 0.63 plane 0.63 0.51 plane 1.26 0.63
Average | 1.72 1.35 Average | 1.35 1.49 Average | 1.62 1.35

(a) Choice of Signal Representation - Canonical-
ization metrics for using Gradients vs. xyz loca-
tions as input signal. Gradients capture the object

surface that help in canonicalization.

(b) Weighing Equivariant Signals by Local Av-
erage Density deteriorates the performance by
smoothing out important details of the shape. We
show canonicalization with (w) and without (w/o)
weighing by the local averaged density.

(c) Siamese Training improves performance on
all canonicalization metrics on average. We show
canonicalization performance with siamese and
without (w/o) siamese training. The average of
Ground Truth Equivariance Consistency GEC
metric reduces to 1.57 from 1.86



Limitations
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https://docs.google.com/file/d/1VkktWS06dGnl59PiOaoiM2w6IR3RJ86p/preview
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