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Overview

HOTNAS: Hierarchical Optimal Transport for Neural Architecture Search
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a hierarchical optimal transportation meric HOTNN , which jointly measures the
similarity of cell internal architectures and the difference in macroarchitectures.

A modular cell-based network with
hierarchical structure
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M The objective of NAS is to discover an optimal neural network architecture
with the minimum validation loss

a* = argminf(a),
acA
M Bayesian optimization (BO) can quickly discover high-performing network

. . A="(x: f(x
architectures with a limited number of samples. .
An example of OT [Kolouri et al. 2017]

B The core of BO is accurately measuring the similarity between different networks.

» Each network can be viewed as a directed acyclic attributed graph.
» Optimal Transport (OT) can naturally handle the graph-like architecture.

» NASBOT [Kandasamy et al. 2018] compute the minimum OT distance between networks as the
similarity metric, but ignoring the similarity between cells.

» TW [Nguyen et al. 2021] are limited to searching for a single cell architecture and ignore the similarity
of macro-architectures.
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Network similarity metric: HOTNN
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Output
M measure the overall similarity between cell-based networks by CJ" 6
leveraging its hierarchical structure T , Conv
Cell 5 < i
B organize the architecture into layers according to cells and learn the T
similarity within and between different layers. Cell 4 %‘;{g‘f
M cell-level similarity computes the OT distance between cells in various Cell 3
networks by considering the similarity of each node and the T ~ 1
differences in the information flow costs between node pairs within Cell 2 Pool
each cell in terms of operational and structural information. T 1
Cell 1 <. Conv
TN 3x3
M Network-level similarity calculates OT distance between networks by |nLu T TR
considering both the cell-level similarity and the variation in the global
position of each cell within their respective networks Example of a modular cell-based network
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Cell-level similarity

(G, = (£ £ 1212)
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W Pairwise matching : learn the differences in the movement cost of various
information flows between pairs of nodes within each cell network in terms of
operational and structural information.
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Network-level similarity

M Transport matching matrix

FeV(f,g) ={l eRYM |y =f My =g}

B Cost matrix: consider both the similarity between cells in two
networks and the difference in the global position of each cell in
their respective networks.

P(B;, BY) =|0"(B}) /6" — 6*(B7) /6% |.
1<s<N,1<t<M,

12=(1—n)iFGW(B!,B?)+nP (B! B?)

¥ HOTNN metric

N M
HOTNN(a',a®) = min ZZF S12

Fevit.e) 7 121
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HOTNAS

Algorithm 1: Hierarchical Optimal Transport for
Neural Architecture Search
Input: Total number of iterations NV, initial
datapoints Dy, search space .4, The maxinum

iterations T’ - = True function
Output: The best architecture a* — Surrogate
1 fort =0t 1 —1do Uncertainty LemT T R
2 Compute HOTNN metric between different Acquisition = N
architectures on the current observation set
Dy =Dy
3 Embed the HOTNN metric to the kernel function
of GP;
4 Fit the GP on the current observation set D;; 5
Construct the UCB acquisition function based on T S P shservaiicn
the predictive mean and variance (see Eq. (S7)); T --- -
6 Generate a pool of candidate architectures P; by observation ey
mutating the current best-performing g acquisition max
architectures; X ¥
7 Select the next promising architectures o w(\)
Qpew = argmax,cp, Us(a);
Evaluate apney to obtain its validation 10SS pew:
9 Update the observation set
Dt+1 =D U {ﬂnew; ynew}; A
10 end )
11 return the best-performing architecture [lustation of BO

a* = argming.p_ f(a)
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Experiments

Table 1. Comparisons of the best-found valid loss and test loss on the TransNAS-Bench-101 benchmark and the DARTS benchmark.

Search Space Tasks Loss Random Search  Evolutionary Search BO-edit NASBOT HOTNAS
Autoencoding Valid Error 28.09+0.18 28.19:&0.24 28.55+0.28  29.25£0.25  25.80£0.04
Test Error 26.65+0.18 26.74+0.24 27.14+0.28  27.82+0.25 24.36+0.01
Object Classification Valid Error 53.21+0.02 52_.96:&0.02 53.42+0.03 53.284£0.02  52.69£0.00
Test Error 46.4940.02 46.25+0.04 46.67+0.03  46.30+0.03  45.90+-0.02
Scene Classification Valid Error 43.854+0.03 43.43+0.03 43.58+0.03 43.78+0.04 43.19+0.01
Test Error 35.43+0.02 35.25+0.03 35.29+0.02  35.254+0.03  35.00+0.01

TransNAS-Bench- 101 Tigsaw Valid Error 3.5840.03 3.2540.01 3.31+£0.00  3.27+0.01 3.17+0.01
Test Error 3.79+0.04 3.35+£0.01 3.34+0.01 3.38+0.02 3.29+0.01
Surface Normal Valid Error 39.20+0.04 37.55+0.16 37.42+0.14 38.80+0.15  36.65+0.20
Test Error 36.27+0.04 34.72+0.15 34.69+0.14 35.99+0.15 33.91+0.19
Room Layout Valid Error 59.98+0.04 59.83+0.03 59.95+£0.06 60.19£0.05 58.92+0.05
Test Error 53.94+0.06 55.54£0.10 54.02+£0.03 54.72+0.09 53.80£0.04
Semantic Segmentation Valid Error 71.59+0.04 71.39£0.05 71.01£0.05 70.89+0.04 70.51£0.01
Test Error 68.97+0.01 68.11£0.05 68.45+0.05 68.30£0.04 67.98+0.03

CIFAR-10 Valid Error 5.90+0.07 5.5040.09 542 +0.14  5.73x0.07 5.37+0.01

DARTS Test Error 3.2840.09 2.87+0.04 2.7240.07  2.93+0.12  2.4340.04
CIFAR-100 Test Error 21.47+0.08 19.75£0.13 20.62+0.12  19.95£0.17 18.46+0.09
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Experiments
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