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[prompt context] + [class name]

Adapt vision-language l
models to new dataset by
learning class names
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[prompt context] + [Placeholder]
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— Language agnostic: I
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— Directly applicable to !
both classification and |
object detection tasks :
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Vision-language classification models
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Radford et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021.



Vision-language detection models

‘Cat’
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“Table’ e.g. ‘A photo of a cat’
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Minderer et al. "Simple open-vocabulary object detection with vision transformers." ECCV 2022



Linear Probe CLIA

Fine-tuning
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« Adapting vision-language models to
new data: challenging!

— Small dataset overfitting
— Losing generalisation ability s
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* Linear probing
— Train a standard linear classification /

layer using frozen image encoder Cat
‘gg\:vl’ » [prompt con [class name] — Text
Data efficient Table' g : RER
Do

improves over zero-shot performance
no hand-crafted text components

8
— Image Learnable
Loses open-set and zero-shot encoder classifier
properties

Image source: Radford et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021.



Sensitivity to prompt input

« Model performance is sensitive to
text input
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« Existing methods rely on handcrafted Technical

class names. Potentially: class names

— Ambiguous |

— Too technical _Class name: Class name:
_ Unrepresentative of image content 2007 Cadillac Escalade EXT Crew Cab A340-200

Image source: Radford et al. "Learning transferable visual models from natural language supervision." International conference on machine learning. PMLR, 2021.



Prompt context learning

« Learn prompt context word
embeddings (frozen vision-language)

Data efficient

Improves over zero-shot performance
Address prompt sensitivity limitations
Maintain open-set properties

Relies on handcrafted class names
Difficult continual adaptation
Weak object detection performance

1
| vim || lcLass) . text encoder
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text
features

similarity
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image encoder

image k
features maximize the score for the
ground-truth class

Figure 2: Overview of context optimization (CoOp).

Zhou et al. "Learning to prompt for vision-language models." International Journal of Computer Vision (2022)



Proposed solution

‘Cat’

‘Car’ Word embeddings
‘Table ____, [promptcontext]
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Proposed solution

Word embeddings
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[prompt context] __
+ [place holder token]

Learnable word embeddings
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Proposed solution

Word embeddings
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Cross entropy loss

[prompt context] ,
+ [place holder token]

Learnable word embeddings
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Experiments: classification with CLIP

* Outperforms SOTAINn open- Open-vocabulary setting: Sequential training setting:
vocabulary and sequential learning half of the dataset learning two sets of class
class names names sequentially

training settings

a0

80

70

« Learning all class names
strongly reduces
dependency on prompt
context

60
60

Accuracy
= n
=] =]

Accuracy

Method - * with engineered context
CLIP*
CoOp
B Qurs
mmm Ours*

el
=

Pt
=

20

-
=

(=]
1




Experiments: Object detection with OWL-vit

Learning class names
(10% of data) — match
performance of fully fine-
tuned model

Significant performance
improvement for rare
classes

Significant gains
compared to prompt
context learning
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Method
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Prompt learning (all classes, 10% data)
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Large reference

vocabulary
‘Cat’ , [prompt context]
‘Car’ + [class name]
‘Bowl’
‘Dog’

Learned word embeddings

[prompt context]
+ [placeholder]
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Original name:

Arctic
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Boot, ski boot

Interpretability

Original name:
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Interpretability

Identifying model biases: American English over British English

Original name: Original name: Original name: Original name:

Clothes hamper Wall socket Postbox Trousers

v v v
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Laundry basket Power outlet Mailbox Clothes, Pants



Potential to
identify
mislabelled data
and failures
modes of our
method
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Conclusion

Novel data efficient adaptation for vision-language models
— Removes dependency on hand-crafted class names
— Learn optimal class word embeddings from visual content

Out of the box usage on classification, detection models
Complementary to prompt context learning methods

High interpretability
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