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Motivation

» Malicious black-box Face recognition (FR) systems pose a
serious threat to personal security/privacy in digital world.

» Governmental and private entities can use FR systems to

track user activities by scraping face images from social
media platforms.

» With billions of people using social media, there is an urgent
demand for effective privacy preservation methods.



Limitations of Existing Works

» Recent noise-constrained adversarial attacks to conceal user identity
results in artefacts. Similarly, patch-based privacy approaches provide

low privacy protection and their large visible pattern compromises
naturalness.

» The closely related AMT-GAN needs a reference image for makeup
style definition, which could affect practicality.

» Most methods focus on impersonating target identities, whereas the
desired privacy objective is dodging.



Goals

» To propose a method that i) outputs naturalistic face images,
ii) preserves the human perceived identity of user face, iii)
ensures high privacy against black-box FR models, iv) offers
user-friendliness, and v) provides protection in both
impersonation and dodging scenarios.



Contributions

» A two-step approach to find adversarial latent codes in a low-
dimensional manifold of a pretrained generative model.

» User-defined textual (makeup) prompts to effectively hide
attack information in the desired makeup style.

» A regularizer to preserve the identity-related attributes within
the latent space of the generative model.
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Protection success rate of black-box impersonation attack under the face verification task. For each

Evaluation: Face Verification

column, the other three FR systems are used as surrogates to generate the protected faces.

Method CelebA-HQ LADN-Dataset Average
IRSE50 1IR152 FaceNet MobileFace IRSE50 IR152 FaceNet MobileFace
Clean 7.29 3.80 1.08 12.68 2.71 3.61 0.60 5.11 4.61
Inverted 5.57 2.77 0.60 13.32 6.80 451 0.25 11.66 5.68
PGD [37] 36.87 20.68 1.85 43.99 40.09 19.59 3.82 41.09 25.60
MI-FGSM [10] 45.79 25.03 2.58 45.85 48.90 25.57 6.31 45.01 30.63
TI-DIM [11] 63.63 36.17 15.30 57.12 56.36 34.18 22.11 48.30 41.64
Adv-Makeup qycarary [71] 21.95 0.48 1.37 22.00 29.64 10.03 0.97 22.38 14.72
TIP-IMccve21y [70] 54.40 37.23 40.74 48.72 65.89 43.57 63.50 46.48 50.06
AMT-GAN cypr22) [22] 76.96 35.13 16.62 50.71 89.64 49.12 32.13 72.43 52.84
Ours 81.10 48.42 41.72 75.26 91.57 53.31 4791 79.94 64.90




Evaluation: Face Identification

Protection success rate of black-box dodging (top) and impersonation (bottom) attacks under the face
identification task. For each column, the other three FR systems are used as surrogates to generate the

protected faces.

Method IRSES0 IR152 FaceNet MobileFace Average
R1-U R5-U R1-U R5-U R1-U R5-U R1-U R5-U R1-U R5-U
MI-FGSM [10] 70.2 42.6 58.4 41.8 59.2 34.0 68.0 47.2 63.9 41.4
TI-DIM [11] 79.0 51.2 67.4 54.0 74.4 52.0 79.2 61.6 75.0 54.7
TIP-IM(ccvary [70] 814 52.2 71.8 54.6 76.0 49.8 82.2 63.0 77.8 54.9
Ours H 86.6 59.4 H 73.4 56.6 H 83.8 51.2 85.0 668 | 822 58.5
R1-T RS5-T RI-T R5-T RI-T RS5-T R1-T R5-T || RI-T RS-T
MI-FGSM | 10.2 14.2 18.8 8.4 22.4 6.15 16.4
TI-DIM [1 1] 13.6 19.6 18 0 32.8 21.6 39.0 12.85 26.25
TIP-IM(ccvary [70] 28.2 11 6 31.2 25.2 56.8 34.0 51.4 19.7 419
Ours 11.2 37.8 16.0 51.2 27.4 54.0 39.0 61.2 23.4 51.05




Evaluation: Naturalness

FID score to measure naturalness.

Method FID | | PSR Gain 1
Adv-Makeup [71] 4.23 0
TIP-IM [70] 38.73 35.34
AMT-GAN [22] 34.44 38.12
Ours 26.62 50.18




Evaluation: Commercial API

Average confidence score (higher is better) returned by a real-world
face verification API, Face++, for impersonation attack.
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Evaluation: Ablation

Original w/o text guidance w text guidance

regularization regularization



Thank you!
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