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Class-incremental learning (CIL) can continuously absorbs new category
knowledge phase-by-phase while faces the challenge of catastrophic forgetting
that renders the networks losing grasp of the learned knowledge when accepting
new tasks.

dThe few-shot setting in FSCIL further impose the data insufficiency constraint on
data avalability that each category/task is given only a few training samples.

JAnalytic learning allows the training to be implemented in a recursive manner
where training data are scattered into multiple batches and the weights trained
recursively are identical to those trained jointly with entire dataset.
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dThis weight-invariant property in analytic learning highly resemble the
incremental learning paradigm and its objective of avoiding forgetting. Can we
implement the resemblance?
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dTwo phases: Base training and few-shot class incremental learning.
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(BP Base training for training the backbone. Then the backbone is frozen.

JAnalytic base retraining for initialize the LS classifier in KAM.

(a) BP Base Training for M Epochs
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dinformation stored in Riis used to update the LS classifiers.

JAFC module augment features to balance the old-new preference.

(c) Kernel Few-shot Class-incremental Learning: Phase 1 KAM
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JFor validation we conduct FSCIL tasks of classification on the CIFAR-100, CUB-200
and mini-ImageNet datasets.

The setting in CIFAR-100/mini-ImageNet is 5-way 5-shot (total 8 phases) and 10-
way 5-shot (total 10 phases) in CUB-200.

dIn the comparison with State-of-the-arts, we can find that our method outperform
the other methods.
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JAblation study on GKE and AFC shows that:
1. Lacking GKE results in catastrophic forgetting;

2. AFC with GKE can improve the performance.

Table 4. Ablation study of the GKE (w: I = 5k, w/o: removed) and AFC (w: C' = 200, w/o: C' = 1) modules.

GKE AFC Phase: 0 1 2 3 4 5 6 7 8
X 13.20 11.99 11.29 10.01 9.39 0.22 8.81 8.10 7.99

12.56 10.80 1029 981 936 860 800 7.89 7.22
74.80  68.98 64.11 59.35 55.78 52.28 49.08 47.02 43.79
74.35 70.32 66.21 6237 60.01 5698 55.12 5339 51.21
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JAnalyze the parameters including GKE parameter, width parameter, AFC parameter:

1. GKEAL hungers for a larger GKE parameter;
2. Exceeding bound of width parameter will cause performance drop;

3. AFC balance the preference of base and new data.
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[ GKEAL handles the FSCIL problem with the kernel embedded module.

1 AFC is another contribution to balance the base-new knowledge.

[ GKEAL shows outstanding performance compared with SOTA in various experiments.



