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Observing the Background to
Discover Objects
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O ur m et h Od Inference (no post-processing)
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https://docs.google.com/file/d/15HO6yjyZyV83VXef2gr9hYLzoOpYf5bC/preview

Let’s get into details
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Related works

Regularization through training with

Construction of initial masks

Leveraging self-supervised features

Object seed = patch with least connection &
select connected similar patches [LOST, BMVC21]

Use a normalized graph-cut & separate an

object from the highly connected patches
[TokenCut, CVPR22; DSM, CVPR22]

Use multiple self-supervised features to
perform spectral clustering [SelfMask, CVPRW22]

Generates correlation maps with different
queries and rank + filter them [FreeSolo, CVPR22]

pseudo-labels (initial masks)

Train a classic detector (+CAD) on top of
coarse bounding boxes

Train an instance segmenter [CutLER, CVPR23]

Train an encoder/decoder architecture with
learnable queries

Train an instance segmenter

In all cases, we observe a large boost



Our approach: FOUND

Q Our coarse masks

e Look for the background instead of objects
¢ No hypotheses about objects
e Quick computation

Q Our model

e No large detector/segmentation model
e Asingle convixl layer
e Trained in 2h on asingle GPU

Q Our inference

e Runsat 80 FPS
e Reaches SoTA results
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N patches
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Background discovery
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fashion
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e Our segmentation head is a single 1x1
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Self-supervised refinement

Coarse
Background mask Foreground mask

~ |

Predicted mask

feature (D

tensor conv1x1

B gradient

- Binary-cross entropy

Our segmentation head is a single 1x1
convolution

Trained with 2 binary cross-entropy losses
using as pseudo-gt:
o the coarse foreground masks
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Self-supervised refinement

Coarse
Background mask Foreground mask

feature Predicted mask
tensor conv1 x1

Bilateral Solver

—_— gradient

- Binary-cross entropy

Our segmentation head is a single 1x1
convolution

Trained with 2 binary cross-entropy losses
using as pseudo-gt:
o the coarse foreground masks
o arefined version of the layer output
(using bilateral solver)

Bilateral solver is used to refine masks
along pixel edges




Overview results Fo U N D
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Some details

Backbone: ViT-S/8

Self-supervised features: DINO [Caron et al, NeurIPS20]

FOUND trained for 500 iterations on DUTS-TR (10k

images) [Wang et al, CVPR17] ~ 2 epochs.

We evaluate on diverse images from datasets like

PascalvVOC, COCO, DUT-OMRON and ECSSD
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https://docs.google.com/file/d/1yuaHmxuATPioJcgXEKXKSqCHpR7VADtG/preview

SoTA in unsupervised localization tasks

-3

Unsupervised object Unsupervised Unsup. Semantic
discovery saliency detection Segmentation Retrieval
Discover at least a correct Discover the salient objects Compute feature per object
single object in the image mask and perform retrieval

We achieve results, with a & model
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Lighter & Faster

FOUND is fast at training & inference

e Our model is a single 1x1 convolution

e Trained in only 2h

SelfMask

FreeSolo

DINOSAUR

FOUND

~ 36M

~ 66M

>5M

770

# learnable parameters

0.4
LOST TokenCut FreeMask FreeSolo FOUND

Inference FPS




Out-of-domain predictions (no post-processing)




A last video & come and talk to us

Thank you for your
attention!



https://docs.google.com/file/d/1onjMTfS3qqiX1kk00CbjxLtwKzwuSfA3/preview

