
The world needs a few good IDEAs

DisCo-CLIP: A Distributed Contrastive Loss for
Memory Efficient CLIP Training

Yihao Chen, Xianbiao Qi, Jianan Wang, Lei Zhang

International Digital Economy Academy (IDEA)

Paper Tag: THU-PM-195

• We decompose the Contrastive Loss and reduce unnecessary redundant
computations. We effectively reducing the computational complexity from O(N2)
to O(N2/n).

• Our work is mathematically equivalent to the original contrastive loss computation.
• We have observed that larger batch sizes are highly effective for contrastive

learning.

Overview

粤港澳大湾区数字经济研究院
International Digital Economy Academy www.idea.edu.cn

CLIP DisCo-CLIP

…TN T1·I1 T1·I2 T1·I3 T1·I4 T1·IN

…

…IA I1 I2 I3 I4 IN

GPU N

… …

…

…

I1

T1

-I1

-T1

I1

I2

I3

I4

IN

T1 T2 T3 T4 TN

IN·TN

…
I4·T4

I3·T3

I2·T2

IN·T1

I2·T1

I3·T1

I4·T1

… … … … …

…

…

…

…

…

I1·T1 I1·T2 I1·T3 I1·T4 I1·TN

I3·T2

I4·T2

IN·T2

I2·T3

I4·T3

IN·T3

I2·T4

I3·T4

IN·T4

I2·TN

I3·TN

I4·TN

Text
Encoder

Image
Encoder

A cute
kitten

A cute
kitten

A cute
kitten

A cute
kittenA cute kitten

…T2 T2·I1 T2·I2 T2·I3 T2·I4 T2·IN

…

…IA I1 I2 I3 I4 IN

GPU 2

…

…

…

…

TA

I1

T1

I1·T1 I1·T2 I1·T3 I1·T4 I1·TN

T2 T3 T4 TN…

…I1

T1

I1·T1 I1·T2 I1·T3 I1·T4 I1·TN

T2 T3 T4 TN

GPU 1

Repeat the calculation in
every GPU

Only calculate what is
necessary in every GPU

Train CLIP more efficiently !
Ø Enable training with large batch size for better performance.
Ø Enable training with limited GPU resources.

Motivation

粤港澳大湾区数字经济研究院
International Digital Economy Academy www.idea.edu.cn

• The original CLIP contrastive loss function:

Where IA and TA denote all image and text features.

Ø Each GPU calculates the full IA× TA similarity matrix for
contrastive loss computation, causing huge computation waste.

DisCo-CLIP: A Distributed Contrastive Loss for Memory Efficient CLIP Training

粤港澳大湾区数字经济研究院
International Digital Economy Academy www.idea.edu.cn

make CLIP training more memory-efficient. Our method
starts from a decomposition of the original contrastive loss.
Based on this decomposition, we divide the contrastive
loss into two parts, one to calculate the intra-GPU loss
and gradients, and the other one to calculate the inter-
GPU loss and gradients. For a mini-batch on the n-th
GPU (hereinafter called its hosting GPU), its intra-GPU
gradients are calculated on its hosting GPU, and its inter-
GPU gradients are collected from other GPUs. DisCo is
an exact solution, mathematically equivalent to the origi-
nal non-distributed contrastive loss, but more memory- and
computation-efficient. It can decrease the memory cost of
contrastive loss from O(B2) to O(B

2

N), where B and N are
the batch size and the number of GPUs. When N equals
to 64, it means around 97% (see Sec. 4.1 for details) of
the memory, and similarly the computational cost, in con-
trastive loss can be saved. Thus, using DisCo in CLIP, we
can enable contrastive training with a larger batch size. Us-
ing 8 Nvidia A100 40GB GPUs, DisCo-CLIP can enable
contrastive training of a ViT-B/32 model with a batch size
of 32,768. Using 64 A100 40GB GPUs, DisCo-CLIP can
train the same model with a larger batch size of 196K.

We summarize our contributions in twofold.

• We propose a novel distributed contrastive loss solu-
tion called DisCo for memory efficient CLIP training,
which can significantly reduce the memory consump-
tion of the contrastive loss computation. Such a solu-
tion enables a larger batch size for contrastive training
using the same computing resource without sacrificing
any computation accuracy.

• We further validate that training with a larger batch
size can further improve the performance of con-
trastive learning models.

2. Background and Related Work
In this section, we will introduce some background infor-

mation for contrastive language-image pre-training (CLIP)
and review some works that reduce memory consumption
of the backbone part by trading computation for memory.

2.1. Contrastive Language-Image Pre-training
The idea behind CLIP [27] is to learn two representa-

tions via two encoders, an image encoder [9, 14, 20, 23, 42]
and a text encoder [2, 8, 28]. Its target is to encourage posi-
tive image-text pairs to have higher similarities, and enforce
negative image-text pairs to have lower similarities. The
training is supervised by two contrastive losses, an image-
to-text loss and a text-to-image loss. Suppose we have B
text-image pairs as a batch sending to two encoders and the
model is trained using N GPUs, with each GPU assigned
b = B

N pairs. Here, we use TA, IA to denote all text and

image features obtained from two encoders. Suppose the
hidden dimension is D, then the shapes of TA, IA are both
B◊D. In this way, our contrastive losses can be written as,

Ld = L1(IA,TA) + L2(TA, IA), (1)

where L1(IA,TA) denotes the image-to-text loss, and
L2(TA, IA) represents the text-to-image loss. The image-
to-text loss means that the loss is to encourage a given im-
age to find its paired text from tens of thousands of texts,
and similarly for the text-to-image loss.

Motivated by the success of CLIP, many new meth-
ods have been proposed, such as FILIP [43], LiT [48],
ALIGN [17], BASIC [26], BLIP [21], GIT [41], and K-
LITE [36]. FILIP attempts to obtain a fine-grained align-
ment between image patches and text words. In contrast,
CLIP only obtains an image-level alignment between an im-
age and a text sentence. FILIP achieves this goal by a modi-
fied contrastive loss. Instead of training both image and text
models from scratch, LiT [48] shows that employing a pre-
trained image model and locking it would greatly benefit
zero-shot classification. Under the contrastive framework,
ALIGN [17] and BASIC [26] investigate how the scaling
up of model, data, and batch size benefits contrastive learn-
ing. Instead of only leveraging contrastive learning frame-
work, BLIP [21] introduces a mixed contrastive learning
and generative learning for vision-language model. Further,
GIT [41] employs a pure generative learning framework and
demonstrates its superior performance.

The success of CLIP and the above methods highly de-
pends on large-scale paired image-text data set [3, 17, 34,
35, 37, 38]. Compared with classification data sets, such as
ImageNet 1K [7] and ImageNet 21K [33], which require
careful human annotation, there are abundant paired image-
text data on the Web and can be more easily collected [34].

Large batch size is a prerequisite for vision-language
contrastive learning. Data Parallelism (DP) and Model Par-
allelism (MP) are two widely used methods in deep learning
for distributed training [8,12,28,39,44,45]. There are many
related works on this topic, such as DeepSpeed [29–31] and
Colossal-AI [1]. We recommend interested readers to refer
to these papers for some common distributed learning tech-
niques. In the following, we will describe several methods
that trade computation for memory in the backbone part.

2.2. Trade Computation for Memory in Backbone
Checkpointing [5] is an effective approach to reduce

memory consumption, especially for the intermediate re-
sults of low-cost operation. It only stores feature maps of
some high-cost operations, such as convolution, MLP, and
self-attention, but drops feature maps of low-cost operations
such as activation (e.g., ReLU, GeLU) and layer normaliza-
tion in the forward pass. In the backward process, these
dropped feature maps can be recomputed quickly at a low

Image-to-Text
Contrastive Loss

Text-to-Image
Contrastive Loss

ØWe split IA and TA as below :

Where In, Tn are image and text features on the n-th GPU, and I ̅𝑛
and T ̅𝑛 denote the collection of features on other GPUs.

ØThen the can be decomposed and rewritten as below:

DisCo-CLIP: A Distributed Contrastive Loss for Memory Efficient CLIP Training

粤港澳大湾区数字经济研究院
International Digital Economy Academy www.idea.edu.cn

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ◊D, the shapes of In and
Tn are B

N ◊D, and the shapes of In and Tn are B(N�1)
N ◊D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients �Ld

�In
for image features In, and the

gradients �Ld
�Tn

for text features Tn as follows,

�Ld

�In
=

�L1(In,TA)

�In
+

�L2(Tn, IA)

�In
+

�L2(Tn, IA)

�In
,

�Ld

�Tn
=

�L1(In,TA)

�Tn
+

�L2(Tn, IA)

�Tn
+

�L1(In,TA)

�Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

�L2(Tn, IA)

�In
=

X

i�=n & i⇥[1,N]

�L2(Ti, IA)

�In
,

�L1(In,TA)

�Tn
=

X

j �=n & j⇥[1,N]

�L1(Ij ,TA)

�Tn
.

(5)

The gradients of �Ld
�In

and �Ld
�Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

(1) Image-to-Text Contrastive Loss Backward

(2) Text-to-Image Contrastive Loss Backward

…

…

…

IA

T1

I1 I2 I3 I4 INGPU 1

…L@ （T , I ）2 1 A

@I 1

L@ （T , I ）2 1 A

@T 1

L@ （T , I ）2 1 A

@I 2
L@ （T , I ）2 1 A

@I 3
L@ （T , I ）2 1 A

@I 4
L@ （T , I ）2 1 A

@I N

T1·I1 T1·I2 T1·I3 T1·I4 T1·IN

…

…

…

TA

I1

T1GPU 1

…

L@ （I , T ）1 1 A

@I 1

L@ （I , T ）1 1 A

@T 1
L@ （I , T ）1 1 A

@T 3
L@ （I , T ）1 1 A

@T 2
L@ （I , T ）1 1 A

@T 4
L@ （I , T ）1 1 A

@T N

I1·T1 I1·T2 I1·T3 I1·T4 I1·TN

T2 T3 T4 TN

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ◊ B similarity matrices instead
of a full B ◊B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for �Ld

�In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute �Ld
�In

and
�Ld
�Tn

, the n-th GPU only needs to compute the following
four terms,

�
�L1(In,TA)

�In
,
�L2(Tn, IA)

�In
,
�L1(In,TA)

�Tn
,
�L2(Tn, IA)

�Tn

⇥
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ◊ B instead of a full matrix of shape
B ◊ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ◊D, the shapes of In and
Tn are B

N ◊D, and the shapes of In and Tn are B(N�1)
N ◊D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients �Ld

�In
for image features In, and the

gradients �Ld
�Tn

for text features Tn as follows,

�Ld

�In
=

�L1(In,TA)

�In
+

�L2(Tn, IA)

�In
+

�L2(Tn, IA)

�In
,

�Ld

�Tn
=

�L1(In,TA)

�Tn
+

�L2(Tn, IA)

�Tn
+

�L1(In,TA)

�Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

�L2(Tn, IA)

�In
=

X

i�=n & i⇥[1,N]

�L2(Ti, IA)

�In
,

�L1(In,TA)

�Tn
=

X

j �=n & j⇥[1,N]

�L1(Ij ,TA)

�Tn
.

(5)

The gradients of �Ld
�In

and �Ld
�Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

(1) Image-to-Text Contrastive Loss Backward

(2) Text-to-Image Contrastive Loss Backward

…

…

…

IA

T1

I1 I2 I3 I4 INGPU 1

…L@ （T , I ）2 1 A

@I 1

L@ （T , I ）2 1 A

@T 1

L@ （T , I ）2 1 A

@I 2
L@ （T , I ）2 1 A

@I 3
L@ （T , I ）2 1 A

@I 4
L@ （T , I ）2 1 A

@I N

T1·I1 T1·I2 T1·I3 T1·I4 T1·IN

…

…

…

TA

I1

T1GPU 1

…

L@ （I , T ）1 1 A

@I 1

L@ （I , T ）1 1 A

@T 1
L@ （I , T ）1 1 A

@T 3
L@ （I , T ）1 1 A

@T 2
L@ （I , T ）1 1 A

@T 4
L@ （I , T ）1 1 A

@T N

I1·T1 I1·T2 I1·T3 I1·T4 I1·TN

T2 T3 T4 TN

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ◊ B similarity matrices instead
of a full B ◊B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for �Ld

�In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute �Ld
�In

and
�Ld
�Tn

, the n-th GPU only needs to compute the following
four terms,

�
�L1(In,TA)

�In
,
�L2(Tn, IA)

�In
,
�L1(In,TA)

�Tn
,
�L2(Tn, IA)

�Tn

⇥
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ◊ B instead of a full matrix of shape
B ◊ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ◊D, the shapes of In and
Tn are B

N ◊D, and the shapes of In and Tn are B(N�1)
N ◊D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients �Ld

�In
for image features In, and the

gradients �Ld
�Tn

for text features Tn as follows,

�Ld

�In
=

�L1(In,TA)

�In
+

�L2(Tn, IA)

�In
+

�L2(Tn, IA)

�In
,

�Ld

�Tn
=

�L1(In,TA)

�Tn
+

�L2(Tn, IA)

�Tn
+

�L1(In,TA)

�Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

�L2(Tn, IA)

�In
=

X

i�=n & i⇥[1,N]

�L2(Ti, IA)

�In
,

�L1(In,TA)

�Tn
=

X

j �=n & j⇥[1,N]

�L1(Ij ,TA)

�Tn
.

(5)

The gradients of �Ld
�In

and �Ld
�Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

(1) Image-to-Text Contrastive Loss Backward

(2) Text-to-Image Contrastive Loss Backward

…

…

…

IA

T1

I1 I2 I3 I4 INGPU 1

…L@ （T , I ）2 1 A

@I 1

L@ （T , I ）2 1 A

@T 1

L@ （T , I ）2 1 A

@I 2
L@ （T , I ）2 1 A

@I 3
L@ （T , I ）2 1 A

@I 4
L@ （T , I ）2 1 A

@I N

T1·I1 T1·I2 T1·I3 T1·I4 T1·IN

…

…

…

TA

I1

T1GPU 1

…

L@ （I , T ）1 1 A

@I 1

L@ （I , T ）1 1 A

@T 1
L@ （I , T ）1 1 A

@T 3
L@ （I , T ）1 1 A

@T 2
L@ （I , T ）1 1 A

@T 4
L@ （I , T ）1 1 A

@T N

I1·T1 I1·T2 I1·T3 I1·T4 I1·TN

T2 T3 T4 TN

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ◊ B similarity matrices instead
of a full B ◊B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for �Ld

�In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute �Ld
�In

and
�Ld
�Tn

, the n-th GPU only needs to compute the following
four terms,

�
�L1(In,TA)

�In
,
�L2(Tn, IA)

�In
,
�L1(In,TA)

�Tn
,
�L2(Tn, IA)

�Tn

⇥
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ◊ B instead of a full matrix of shape
B ◊ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

ØIt is clear that and do not include gradients.

ØWe can decompose the gradients and as below :

DisCo-CLIP: A Distributed Contrastive Loss for Memory Efficient CLIP Training

粤港澳大湾区数字经济研究院
International Digital Economy Academy www.idea.edu.cn

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ⇥ D, the shapes of In and
Tn are B

N ⇥D, and the shapes of In and Tn are B(N�1)
N ⇥D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients @Ld

@In
for image features In, and the

gradients @Ld
@Tn

for text features Tn as follows,

@Ld

@In
=

@L1(In,TA)

@In
+

@L2(Tn, IA)

@In
+

@L2(Tn, IA)

@In
,

@Ld

@Tn
=

@L1(In,TA)

@Tn
+

@L2(Tn, IA)

@Tn
+

@L1(In,TA)

@Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

@L2(Tn, IA)

@In
=

X

i 6=n & i2[1,N]

@L2(Ti, IA)

@In
,

@L1(In,TA)

@Tn
=

X

j 6=n & j2[1,N]

@L1(Ij ,TA)

@Tn
.

(5)

The gradients of @Ld
@In

and @Ld
@Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ⇥ B similarity matrices instead
of a full B ⇥B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for @Ld

@In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute @Ld
@In

and
@Ld
@Tn

, the n-th GPU only needs to compute the following
four terms,


@L1(In,TA)

@In
,
@L2(Tn, IA)

@In
,
@L1(In,TA)

@Tn
,
@L2(Tn, IA)

@Tn

�
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ⇥ B instead of a full matrix of shape
B ⇥ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ⇥ D, the shapes of In and
Tn are B

N ⇥D, and the shapes of In and Tn are B(N�1)
N ⇥D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients @Ld

@In
for image features In, and the

gradients @Ld
@Tn

for text features Tn as follows,

@Ld

@In
=

@L1(In,TA)

@In
+

@L2(Tn, IA)

@In
+

@L2(Tn, IA)

@In
,

@Ld

@Tn
=

@L1(In,TA)

@Tn
+

@L2(Tn, IA)

@Tn
+

@L1(In,TA)

@Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

@L2(Tn, IA)

@In
=

X

i 6=n & i2[1,N]

@L2(Ti, IA)

@In
,

@L1(In,TA)

@Tn
=

X

j 6=n & j2[1,N]

@L1(Ij ,TA)

@Tn
.

(5)

The gradients of @Ld
@In

and @Ld
@Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ⇥ B similarity matrices instead
of a full B ⇥B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for @Ld

@In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute @Ld
@In

and
@Ld
@Tn

, the n-th GPU only needs to compute the following
four terms,


@L1(In,TA)

@In
,
@L2(Tn, IA)

@In
,
@L1(In,TA)

@Tn
,
@L2(Tn, IA)

@Tn

�
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ⇥ B instead of a full matrix of shape
B ⇥ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ⇥ D, the shapes of In and
Tn are B

N ⇥D, and the shapes of In and Tn are B(N�1)
N ⇥D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients @Ld

@In
for image features In, and the

gradients @Ld
@Tn

for text features Tn as follows,

@Ld

@In
=

@L1(In,TA)

@In
+

@L2(Tn, IA)

@In
+

@L2(Tn, IA)

@In
,

@Ld

@Tn
=

@L1(In,TA)

@Tn
+

@L2(Tn, IA)

@Tn
+

@L1(In,TA)

@Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

@L2(Tn, IA)

@In
=

X

i 6=n & i2[1,N]

@L2(Ti, IA)

@In
,

@L1(In,TA)

@Tn
=

X

j 6=n & j2[1,N]

@L1(Ij ,TA)

@Tn
.

(5)

The gradients of @Ld
@In

and @Ld
@Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ⇥ B similarity matrices instead
of a full B ⇥B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for @Ld

@In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute @Ld
@In

and
@Ld
@Tn

, the n-th GPU only needs to compute the following
four terms,


@L1(In,TA)

@In
,
@L2(Tn, IA)

@In
,
@L1(In,TA)

@Tn
,
@L2(Tn, IA)

@Tn

�
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ⇥ B instead of a full matrix of shape
B ⇥ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ⇥ D, the shapes of In and
Tn are B

N ⇥D, and the shapes of In and Tn are B(N�1)
N ⇥D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients @Ld

@In
for image features In, and the

gradients @Ld
@Tn

for text features Tn as follows,

@Ld

@In
=

@L1(In,TA)

@In
+

@L2(Tn, IA)

@In
+

@L2(Tn, IA)

@In
,

@Ld

@Tn
=

@L1(In,TA)

@Tn
+

@L2(Tn, IA)

@Tn
+

@L1(In,TA)

@Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

@L2(Tn, IA)

@In
=

X

i 6=n & i2[1,N]

@L2(Ti, IA)

@In
,

@L1(In,TA)

@Tn
=

X

j 6=n & j2[1,N]

@L1(Ij ,TA)

@Tn
.

(5)

The gradients of @Ld
@In

and @Ld
@Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ⇥ B similarity matrices instead
of a full B ⇥B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for @Ld

@In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute @Ld
@In

and
@Ld
@Tn

, the n-th GPU only needs to compute the following
four terms,


@L1(In,TA)

@In
,
@L2(Tn, IA)

@In
,
@L1(In,TA)

@Tn
,
@L2(Tn, IA)

@Tn

�
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ⇥ B instead of a full matrix of shape
B ⇥ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ◊D, the shapes of In and
Tn are B

N ◊D, and the shapes of In and Tn are B(N�1)
N ◊D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients �Ld

�In
for image features In, and the

gradients �Ld
�Tn

for text features Tn as follows,

�Ld

�In
=

�L1(In,TA)

�In
+

�L2(Tn, IA)

�In
+

�L2(Tn, IA)

�In
,

�Ld

�Tn
=

�L1(In,TA)

�Tn
+

�L2(Tn, IA)

�Tn
+

�L1(In,TA)

�Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

�L2(Tn, IA)

�In
=

X

i�=n & i⇥[1,N]

�L2(Ti, IA)

�In
,

�L1(In,TA)

�Tn
=

X

j �=n & j⇥[1,N]

�L1(Ij ,TA)

�Tn
.

(5)

The gradients of �Ld
�In

and �Ld
�Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

(1) Image-to-Text Contrastive Loss Backward

(2) Text-to-Image Contrastive Loss Backward

…

…

…

IA

T1

I1 I2 I3 I4 INGPU 1

…L@ （T , I ）2 1 A

@I 1

L@ （T , I ）2 1 A

@T 1

L@ （T , I ）2 1 A

@I 2
L@ （T , I ）2 1 A

@I 3
L@ （T , I ）2 1 A

@I 4
L@ （T , I ）2 1 A

@I N

T1·I1 T1·I2 T1·I3 T1·I4 T1·IN

…

…

…

TA

I1

T1GPU 1

…

L@ （I , T ）1 1 A

@I 1

L@ （I , T ）1 1 A

@T 1
L@ （I , T ）1 1 A

@T 3
L@ （I , T ）1 1 A

@T 2
L@ （I , T ）1 1 A

@T 4
L@ （I , T ）1 1 A

@T N

I1·T1 I1·T2 I1·T3 I1·T4 I1·TN

T2 T3 T4 TN

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ◊ B similarity matrices instead
of a full B ◊B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for �Ld

�In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute �Ld
�In

and
�Ld
�Tn

, the n-th GPU only needs to compute the following
four terms,

�
�L1(In,TA)

�In
,
�L2(Tn, IA)

�In
,
�L1(In,TA)

�Tn
,
�L2(Tn, IA)

�Tn

⇥
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ◊ B instead of a full matrix of shape
B ◊ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ⇥ D, the shapes of In and
Tn are B

N ⇥D, and the shapes of In and Tn are B(N�1)
N ⇥D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients @Ld

@In
for image features In, and the

gradients @Ld
@Tn

for text features Tn as follows,

@Ld

@In
=

@L1(In,TA)

@In
+

@L2(Tn, IA)

@In
+

@L2(Tn, IA)

@In
,

@Ld

@Tn
=

@L1(In,TA)

@Tn
+

@L2(Tn, IA)

@Tn
+

@L1(In,TA)

@Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

@L2(Tn, IA)

@In
=

X

i 6=n & i2[1,N]

@L2(Ti, IA)

@In
,

@L1(In,TA)

@Tn
=

X

j 6=n & j2[1,N]

@L1(Ij ,TA)

@Tn
.

(5)

The gradients of @Ld
@In

and @Ld
@Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ⇥ B similarity matrices instead
of a full B ⇥B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for @Ld

@In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute @Ld
@In

and
@Ld
@Tn

, the n-th GPU only needs to compute the following
four terms,


@L1(In,TA)

@In
,
@L2(Tn, IA)

@In
,
@L1(In,TA)

@Tn
,
@L2(Tn, IA)

@Tn

�
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ⇥ B instead of a full matrix of shape
B ⇥ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ◊D, the shapes of In and
Tn are B

N ◊D, and the shapes of In and Tn are B(N�1)
N ◊D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients �Ld

�In
for image features In, and the

gradients �Ld
�Tn

for text features Tn as follows,

�Ld

�In
=

�L1(In,TA)

�In
+

�L2(Tn, IA)

�In
+

�L2(Tn, IA)

�In
,

�Ld

�Tn
=

�L1(In,TA)

�Tn
+

�L2(Tn, IA)

�Tn
+

�L1(In,TA)

�Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

�L2(Tn, IA)

�In
=

X

i�=n & i⇥[1,N]

�L2(Ti, IA)

�In
,

�L1(In,TA)

�Tn
=

X

j �=n & j⇥[1,N]

�L1(Ij ,TA)

�Tn
.

(5)

The gradients of �Ld
�In

and �Ld
�Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

(1) Image-to-Text Contrastive Loss Backward

(2) Text-to-Image Contrastive Loss Backward

…

…

…

IA

T1

I1 I2 I3 I4 INGPU 1

…L@ （T , I ）2 1 A

@I 1

L@ （T , I ）2 1 A

@T 1

L@ （T , I ）2 1 A

@I 2
L@ （T , I ）2 1 A

@I 3
L@ （T , I ）2 1 A

@I 4
L@ （T , I ）2 1 A

@I N

T1·I1 T1·I2 T1·I3 T1·I4 T1·IN

…

…

…

TA

I1

T1GPU 1

…

L@ （I , T ）1 1 A

@I 1

L@ （I , T ）1 1 A

@T 1
L@ （I , T ）1 1 A

@T 3
L@ （I , T ）1 1 A

@T 2
L@ （I , T ）1 1 A

@T 4
L@ （I , T ）1 1 A

@T N

I1·T1 I1·T2 I1·T3 I1·T4 I1·TN

T2 T3 T4 TN

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ◊ B similarity matrices instead
of a full B ◊B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for �Ld

�In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute �Ld
�In

and
�Ld
�Tn

, the n-th GPU only needs to compute the following
four terms,

�
�L1(In,TA)

�In
,
�L2(Tn, IA)

�In
,
�L1(In,TA)

�Tn
,
�L2(Tn, IA)

�Tn

⇥
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ◊ B instead of a full matrix of shape
B ◊ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ⇥ D, the shapes of In and
Tn are B

N ⇥D, and the shapes of In and Tn are B(N�1)
N ⇥D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients @Ld

@In
for image features In, and the

gradients @Ld
@Tn

for text features Tn as follows,

@Ld

@In
=

@L1(In,TA)

@In
+

@L2(Tn, IA)

@In
+

@L2(Tn, IA)

@In
,

@Ld

@Tn
=

@L1(In,TA)

@Tn
+

@L2(Tn, IA)

@Tn
+

@L1(In,TA)

@Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

@L2(Tn, IA)

@In
=

X

i 6=n & i2[1,N]

@L2(Ti, IA)

@In
,

@L1(In,TA)

@Tn
=

X

j 6=n & j2[1,N]

@L1(Ij ,TA)

@Tn
.

(5)

The gradients of @Ld
@In

and @Ld
@Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ⇥ B similarity matrices instead
of a full B ⇥B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for @Ld

@In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute @Ld
@In

and
@Ld
@Tn

, the n-th GPU only needs to compute the following
four terms,


@L1(In,TA)

@In
,
@L2(Tn, IA)

@In
,
@L1(In,TA)

@Tn
,
@L2(Tn, IA)

@Tn

�
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ⇥ B instead of a full matrix of shape
B ⇥ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

L@ （T , I ）2 1 A

@T 1

intra-GPU gradient inter-GPU gradient

L@ （T , I ）2 1 A

@T 1
L@ （T , I ）2 1 A

@T 1

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ◊D, the shapes of In and
Tn are B

N ◊D, and the shapes of In and Tn are B(N�1)
N ◊D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients �Ld

�In
for image features In, and the

gradients �Ld
�Tn

for text features Tn as follows,

�Ld

�In
=

�L1(In,TA)

�In
+

�L2(Tn, IA)

�In
+

�L2(Tn, IA)

�In
,

�Ld

�Tn
=

�L1(In,TA)

�Tn
+

�L2(Tn, IA)

�Tn
+

�L1(In,TA)

�Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

�L2(Tn, IA)

�In
=

X

i�=n & i⇥[1,N]

�L2(Ti, IA)

�In
,

�L1(In,TA)

�Tn
=

X

j �=n & j⇥[1,N]

�L1(Ij ,TA)

�Tn
.

(5)

The gradients of �Ld
�In

and �Ld
�Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

(1) Image-to-Text Contrastive Loss Backward

(2) Text-to-Image Contrastive Loss Backward

…

…

…

IA

T1

I1 I2 I3 I4 INGPU 1

…L@ （T , I ）2 1 A

@I 1

L@ （T , I ）2 1 A

@T 1

L@ （T , I ）2 1 A

@I 2
L@ （T , I ）2 1 A

@I 3
L@ （T , I ）2 1 A

@I 4
L@ （T , I ）2 1 A

@I N

T1·I1 T1·I2 T1·I3 T1·I4 T1·IN

…

…

…

TA

I1

T1GPU 1

…

L@ （I , T ）1 1 A

@I 1

L@ （I , T ）1 1 A

@T 1
L@ （I , T ）1 1 A

@T 3
L@ （I , T ）1 1 A

@T 2
L@ （I , T ）1 1 A

@T 4
L@ （I , T ）1 1 A

@T N

I1·T1 I1·T2 I1·T3 I1·T4 I1·TN

T2 T3 T4 TN

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ◊ B similarity matrices instead
of a full B ◊B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for �Ld

�In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute �Ld
�In

and
�Ld
�Tn

, the n-th GPU only needs to compute the following
four terms,

�
�L1(In,TA)

�In
,
�L2(Tn, IA)

�In
,
�L1(In,TA)

�Tn
,
�L2(Tn, IA)

�Tn

⇥
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ◊ B instead of a full matrix of shape
B ◊ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ⇥ D, the shapes of In and
Tn are B

N ⇥D, and the shapes of In and Tn are B(N�1)
N ⇥D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients @Ld

@In
for image features In, and the

gradients @Ld
@Tn

for text features Tn as follows,

@Ld

@In
=

@L1(In,TA)

@In
+

@L2(Tn, IA)

@In
+

@L2(Tn, IA)

@In
,

@Ld

@Tn
=

@L1(In,TA)

@Tn
+

@L2(Tn, IA)

@Tn
+

@L1(In,TA)

@Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

@L2(Tn, IA)

@In
=

X

i 6=n & i2[1,N]

@L2(Ti, IA)

@In
,

@L1(In,TA)

@Tn
=

X

j 6=n & j2[1,N]

@L1(Ij ,TA)

@Tn
.

(5)

The gradients of @Ld
@In

and @Ld
@Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ⇥ B similarity matrices instead
of a full B ⇥B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for @Ld

@In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute @Ld
@In

and
@Ld
@Tn

, the n-th GPU only needs to compute the following
four terms,


@L1(In,TA)

@In
,
@L2(Tn, IA)

@In
,
@L1(In,TA)

@Tn
,
@L2(Tn, IA)

@Tn

�
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ⇥ B instead of a full matrix of shape
B ⇥ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

Ø For intra-GPU gradient on the n-th GPU, we only need to calculate
- and .

Ø For inter-GPU gradient on the n-th GPU, It would have already
been calculated as intra-GPU gradient on other GPUs.

Ø In order to obtain and , we use the All_Reduce
operation to perform gradient communication and to collect
all gradients with respect to In and Tn.

DisCo-CLIP: A Distributed Contrastive Loss for Memory Efficient CLIP Training

粤港澳大湾区数字经济研究院
International Digital Economy Academy www.idea.edu.cn

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ◊D, the shapes of In and
Tn are B

N ◊D, and the shapes of In and Tn are B(N�1)
N ◊D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients �Ld

�In
for image features In, and the

gradients �Ld
�Tn

for text features Tn as follows,

�Ld

�In
=

�L1(In,TA)

�In
+

�L2(Tn, IA)

�In
+

�L2(Tn, IA)

�In
,

�Ld

�Tn
=

�L1(In,TA)

�Tn
+

�L2(Tn, IA)

�Tn
+

�L1(In,TA)

�Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

�L2(Tn, IA)

�In
=

X

i�=n & i⇥[1,N]

�L2(Ti, IA)

�In
,

�L1(In,TA)

�Tn
=

X

j �=n & j⇥[1,N]

�L1(Ij ,TA)

�Tn
.

(5)

The gradients of �Ld
�In

and �Ld
�Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

(1) Image-to-Text Contrastive Loss Backward

(2) Text-to-Image Contrastive Loss Backward

…

…

…

IA

T1

I1 I2 I3 I4 INGPU 1

…L@ （T , I ）2 1 A

@I 1

L@ （T , I ）2 1 A

@T 1

L@ （T , I ）2 1 A

@I 2
L@ （T , I ）2 1 A

@I 3
L@ （T , I ）2 1 A

@I 4
L@ （T , I ）2 1 A

@I N

T1·I1 T1·I2 T1·I3 T1·I4 T1·IN

…

…

…

TA

I1

T1GPU 1

…

L@ （I , T ）1 1 A

@I 1

L@ （I , T ）1 1 A

@T 1
L@ （I , T ）1 1 A

@T 3
L@ （I , T ）1 1 A

@T 2
L@ （I , T ）1 1 A

@T 4
L@ （I , T ）1 1 A

@T N

I1·T1 I1·T2 I1·T3 I1·T4 I1·TN

T2 T3 T4 TN

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ◊ B similarity matrices instead
of a full B ◊B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for �Ld

�In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute �Ld
�In

and
�Ld
�Tn

, the n-th GPU only needs to compute the following
four terms,

�
�L1(In,TA)

�In
,
�L2(Tn, IA)

�In
,
�L1(In,TA)

�Tn
,
�L2(Tn, IA)

�Tn

⇥
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ◊ B instead of a full matrix of shape
B ◊ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ◊D, the shapes of In and
Tn are B

N ◊D, and the shapes of In and Tn are B(N�1)
N ◊D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients �Ld

�In
for image features In, and the

gradients �Ld
�Tn

for text features Tn as follows,

�Ld

�In
=

�L1(In,TA)

�In
+

�L2(Tn, IA)

�In
+

�L2(Tn, IA)

�In
,

�Ld

�Tn
=

�L1(In,TA)

�Tn
+

�L2(Tn, IA)

�Tn
+

�L1(In,TA)

�Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

�L2(Tn, IA)

�In
=

X

i�=n & i⇥[1,N]

�L2(Ti, IA)

�In
,

�L1(In,TA)

�Tn
=

X

j �=n & j⇥[1,N]

�L1(Ij ,TA)

�Tn
.

(5)

The gradients of �Ld
�In

and �Ld
�Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

(1) Image-to-Text Contrastive Loss Backward

(2) Text-to-Image Contrastive Loss Backward

…

…

…

IA

T1

I1 I2 I3 I4 INGPU 1

…L@ （T , I ）2 1 A

@I 1

L@ （T , I ）2 1 A

@T 1

L@ （T , I ）2 1 A

@I 2
L@ （T , I ）2 1 A

@I 3
L@ （T , I ）2 1 A

@I 4
L@ （T , I ）2 1 A

@I N

T1·I1 T1·I2 T1·I3 T1·I4 T1·IN

…

…

…

TA

I1

T1GPU 1

…

L@ （I , T ）1 1 A

@I 1

L@ （I , T ）1 1 A

@T 1
L@ （I , T ）1 1 A

@T 3
L@ （I , T ）1 1 A

@T 2
L@ （I , T ）1 1 A

@T 4
L@ （I , T ）1 1 A

@T N

I1·T1 I1·T2 I1·T3 I1·T4 I1·TN

T2 T3 T4 TN

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ◊ B similarity matrices instead
of a full B ◊B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for �Ld

�In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute �Ld
�In

and
�Ld
�Tn

, the n-th GPU only needs to compute the following
four terms,

�
�L1(In,TA)

�In
,
�L2(Tn, IA)

�In
,
�L1(In,TA)

�Tn
,
�L2(Tn, IA)

�Tn

⇥
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ◊ B instead of a full matrix of shape
B ◊ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ⇥ D, the shapes of In and
Tn are B

N ⇥D, and the shapes of In and Tn are B(N�1)
N ⇥D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients @Ld

@In
for image features In, and the

gradients @Ld
@Tn

for text features Tn as follows,

@Ld

@In
=

@L1(In,TA)

@In
+

@L2(Tn, IA)

@In
+

@L2(Tn, IA)

@In
,

@Ld

@Tn
=

@L1(In,TA)

@Tn
+

@L2(Tn, IA)

@Tn
+

@L1(In,TA)

@Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

@L2(Tn, IA)

@In
=

X

i 6=n & i2[1,N]

@L2(Ti, IA)

@In
,

@L1(In,TA)

@Tn
=

X

j 6=n & j2[1,N]

@L1(Ij ,TA)

@Tn
.

(5)

The gradients of @Ld
@In

and @Ld
@Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ⇥ B similarity matrices instead
of a full B ⇥B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for @Ld

@In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute @Ld
@In

and
@Ld
@Tn

, the n-th GPU only needs to compute the following
four terms,


@L1(In,TA)

@In
,
@L2(Tn, IA)

@In
,
@L1(In,TA)

@Tn
,
@L2(Tn, IA)

@Tn

�
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ⇥ B instead of a full matrix of shape
B ⇥ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ⇥ D, the shapes of In and
Tn are B

N ⇥D, and the shapes of In and Tn are B(N�1)
N ⇥D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients @Ld

@In
for image features In, and the

gradients @Ld
@Tn

for text features Tn as follows,

@Ld

@In
=

@L1(In,TA)

@In
+

@L2(Tn, IA)

@In
+

@L2(Tn, IA)

@In
,

@Ld

@Tn
=

@L1(In,TA)

@Tn
+

@L2(Tn, IA)

@Tn
+

@L1(In,TA)

@Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

@L2(Tn, IA)

@In
=

X

i 6=n & i2[1,N]

@L2(Ti, IA)

@In
,

@L1(In,TA)

@Tn
=

X

j 6=n & j2[1,N]

@L1(Ij ,TA)

@Tn
.

(5)

The gradients of @Ld
@In

and @Ld
@Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ⇥ B similarity matrices instead
of a full B ⇥B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for @Ld

@In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute @Ld
@In

and
@Ld
@Tn

, the n-th GPU only needs to compute the following
four terms,


@L1(In,TA)

@In
,
@L2(Tn, IA)

@In
,
@L1(In,TA)

@Tn
,
@L2(Tn, IA)

@Tn

�
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ⇥ B instead of a full matrix of shape
B ⇥ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

L@ （T , I ）2 1 A

@T 1

Pseudo-code

粤港澳大湾区数字经济研究院
International Digital Economy Academy www.idea.edu.cn

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ◊D, the shapes of In and
Tn are B

N ◊D, and the shapes of In and Tn are B(N�1)
N ◊D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients �Ld

�In
for image features In, and the

gradients �Ld
�Tn

for text features Tn as follows,

�Ld

�In
=

�L1(In,TA)

�In
+

�L2(Tn, IA)

�In
+

�L2(Tn, IA)

�In
,

�Ld

�Tn
=

�L1(In,TA)

�Tn
+

�L2(Tn, IA)

�Tn
+

�L1(In,TA)

�Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

�L2(Tn, IA)

�In
=

X

i�=n & i⇥[1,N]

�L2(Ti, IA)

�In
,

�L1(In,TA)

�Tn
=

X

j �=n & j⇥[1,N]

�L1(Ij ,TA)

�Tn
.

(5)

The gradients of �Ld
�In

and �Ld
�Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

(1) Image-to-Text Contrastive Loss Backward

(2) Text-to-Image Contrastive Loss Backward

…

…

…

IA

T1

I1 I2 I3 I4 INGPU 1

…L@ （T , I ）2 1 A

@I 1

L@ （T , I ）2 1 A

@T 1

L@ （T , I ）2 1 A

@I 2
L@ （T , I ）2 1 A

@I 3
L@ （T , I ）2 1 A

@I 4
L@ （T , I ）2 1 A

@I N

T1·I1 T1·I2 T1·I3 T1·I4 T1·IN

…

…

…

TA

I1

T1GPU 1

…

L@ （I , T ）1 1 A

@I 1

L@ （I , T ）1 1 A

@T 1
L@ （I , T ）1 1 A

@T 3
L@ （I , T ）1 1 A

@T 2
L@ （I , T ）1 1 A

@T 4
L@ （I , T ）1 1 A

@T N

I1·T1 I1·T2 I1·T3 I1·T4 I1·TN

T2 T3 T4 TN

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ◊ B similarity matrices instead
of a full B ◊B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for �Ld

�In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute �Ld
�In

and
�Ld
�Tn

, the n-th GPU only needs to compute the following
four terms,

�
�L1(In,TA)

�In
,
�L2(Tn, IA)

�In
,
�L1(In,TA)

�Tn
,
�L2(Tn, IA)

�Tn

⇥
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ◊ B instead of a full matrix of shape
B ◊ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

inter-GPU loss and gradients. This section will first intro-
duce how we decompose this loss calculation. Then, we
will describe the algorithm implementation of DisCo-CLIP
in detail.

4.1. DisCo: A Distributed Contrastive Loss
As shown in Eq. 1, IA and TA denote all image and text

features collected from all GPUs. Here, we use In and Tn

to denote the image and text features on the n-th GPU, and
use In and Tn to denote the image and text features on all
other GPUs. The division is denoted as,

IA = [In, In],

TA = [Tn, Tn]
(2)

The shapes of IA and TA are B ◊D, the shapes of In and
Tn are B

N ◊D, and the shapes of In and Tn are B(N�1)
N ◊D.

According to the above definition, the contrastive loss
can be decomposed and rewritten as,

Ld = L1(In,TA) + L1(In,TA)+

L2(Tn, IA) + L2(Tn, IA),
(3)

where L1(In,TA) denotes the image-to-text contrastive
loss between image features In and text features TA, and
L2(Tn, IA) denotes the text-to-image loss between Tn and
IA. Mathematically, the computational result Ld in Eq. 3
is the same as the result L in Eq. 1. However, by decom-
posing the loss Ld into four parts, the gradient flow in the
back-propagation process is more obvious. Meanwhile, we
can see that L1(In,TA) does not induce gradients with re-
spect to In and L2(Tn, IA) has no gradients with respect
to Tn. Actually, these two terms are redundant computa-
tion on the n-th GPU in the original contrastive loss, which
unnecessarily consume a large amount of memory.

Thus, according to the decomposition in Eq. 3, we can
calculate the gradients �Ld

�In
for image features In, and the

gradients �Ld
�Tn

for text features Tn as follows,

�Ld

�In
=

�L1(In,TA)

�In
+

�L2(Tn, IA)

�In
+

�L2(Tn, IA)

�In
,

�Ld

�Tn
=

�L1(In,TA)

�Tn
+

�L2(Tn, IA)

�Tn
+

�L1(In,TA)

�Tn
,

(4)

where the losses in the red part can be further unfolded in a
sum form as,

�L2(Tn, IA)

�In
=

X

i�=n & i⇥[1,N]

�L2(Ti, IA)

�In
,

�L1(In,TA)

�Tn
=

X

j �=n & j⇥[1,N]

�L1(Ij ,TA)

�Tn
.

(5)

The gradients of �Ld
�In

and �Ld
�Tn

both consist of three
terms. In both equations, all three terms can be divided into
two parts, we mark them with two different colors, blue and

(1) Image-to-Text Contrastive Loss Backward

(2) Text-to-Image Contrastive Loss Backward

…

…

…

IA

T1

I1 I2 I3 I4 INGPU 1

…L@ （T , I ）2 1 A

@I 1

L@ （T , I ）2 1 A

@T 1

L@ （T , I ）2 1 A

@I 2
L@ （T , I ）2 1 A

@I 3
L@ （T , I ）2 1 A

@I 4
L@ （T , I ）2 1 A

@I N

T1·I1 T1·I2 T1·I3 T1·I4 T1·IN

…

…

…

TA

I1

T1GPU 1

…

L@ （I , T ）1 1 A

@I 1

L@ （I , T ）1 1 A

@T 1
L@ （I , T ）1 1 A

@T 3
L@ （I , T ）1 1 A

@T 2
L@ （I , T ）1 1 A

@T 4
L@ （I , T ）1 1 A

@T N

I1·T1 I1·T2 I1·T3 I1·T4 I1·TN

T2 T3 T4 TN

Figure 2. Illustration of the gradient calculation of DisCo on the
first GPU. In DisCo, to calculate the gradients on the current GPU,
we only need to compute two B

N ◊ B similarity matrices instead
of a full B ◊B matrix as shown in Fig. 1.

red. The gradients in the blue part are calculated on the n-
th (hosting) GPU, and the gradients in the red part are cal-
culated on other GPUs. We call them intra-GPU gradients
and inter-GPU gradients, respectively. When computing the
red part for �Ld

�In
, the images In are considered as negative

samples. It should be noted that although In is regarded as
negative samples, there still induce gradients for In.

According to this decomposition, to compute �Ld
�In

and
�Ld
�Tn

, the n-th GPU only needs to compute the following
four terms,

�
�L1(In,TA)

�In
,
�L2(Tn, IA)

�In
,
�L1(In,TA)

�Tn
,
�L2(Tn, IA)

�Tn

⇥
.

(6)
All four terms only need to compute two small similarity
matrices of shape B

N ◊ B instead of a full matrix of shape
B ◊ B which consumes a large amount of memory. In this
way, we can reduce memory consumption from B2 to 2B2

N .
For instance, when N = 16, we save 7

8 of memory con-
sumption, if N is 64, we save 31

32 of memory consumption.
Meanwhile, it also saves much computation. The compu-

Calculate the intra-GPU gradient and
the inter-GPU gradient of other GPUs.

Collect intra-GPU gradient and
inter-GPU gradient from all GPUs

Experiments

粤港澳大湾区数字经济研究院
International Digital Economy Academy www.idea.edu.cn

Ø Disco-CLIP is mathematically equivalent to the original contrastive
loss computation.

Ø DisCo-CLIP can enable a much larger batch size for contrastive
learning compared to CLIP, using the same GPU resource.

Conclusion

粤港澳大湾区数字经济研究院
International Digital Economy Academy www.idea.edu.cn

