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 Motivation and Contribution
• Motivation:

• The spatial perception module tends to be undertrained.
• However, we have no idea about the desired temporal aggregation module.

• Contribution:
• We extensively study the limitation and desirable properties of the temporal

aggregation module and find it should be a shallow one and have high temporal
aggregation capability.

• We propose the cross-temporal context aggregation (CTCA) that a shallow
temporal aggregation module has capable of incorporating local-global temporal
contexts and the linguistic prior.



 The SOTA framework of CSLR
• Spatial Perception Module (SPM):

• Spatial feature extraction.

• Temporal Aggregation Module (TAM):
• Local-global temporal feature extraction, which is

crucial to recognition performance.

• It includes the local temporal perception module
(1D-TCNs), and the global temporal perception
module (BLSTM).

• Sequence prediction:
• Connectionist temporal classification (CTC) function.
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 Motivation
• The spatial perception module tends to be

undertrained due to the easy overfitting temporal
aggregation module and the objective function[1-3].

• What are the effects of the TAM on the SPM?
• What are the properties of the desired TAM?

1. Ronglai Zuo and Brian Mak. C2SLR: Consistency-enhanced continuous sign language recognition. In CVPR, 2022.
2. Aiming Hao, Yuecong Min, and Xilin Chen. Self-mutual distillation learning for continuous sign language recognition. In ICCV,

2021.
3. Junfu Pu, Wengang Zhou, and Houqiang Li. Iterative alignment network for continuous sign language recognition. In CVPR,

2019.
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 Empirical Studies and Analysis

• Observations:
• The effects of chain depth on the capability of

SPM and TAM have completely opposite trends.
• SPM: has higher effects on the final prediction.

• TAM desired properties:
• SPM desires a shallow TAM.
• TAM desires a deeper architecture.

1. Zifeng Wang, Shao-Lun Huang, Ercan Engin Kuruoglu, Ji-meng Sun, Xi Chen, and Yefeng Zheng. Pac-bayes information bottleneck. In ICLR, 2022.

• Model Generalizability Metric:
• IIW (the compression of information stored in

weights)[1].
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 The conflict caused by shallow TAM
• Advantage:

• Shallow TAM allows more thorough training of the spatial perception module.

• Disadvantage:
• However, a shallow TAM cannot well capture both local and global temporal context

information.



• SPM-Shared Dual-Path Network (SDPN):
designed for a shallow TAM allows more
thorough training of the SPM.

• Cross-Context Knowledge Distillation
(CCKD): enables the global perception
module to achieve local-global temporal
perception and be more discriminative.

 Cross-Temporal Context Aggregation (CTCA)



• Cross-Context Knowledge Distillation:
• Cross-temporal knowledge distillation:

• Local temporal context guidance loss: encourages
to learn sign-wise context maintained in .

• Global temporal context guidance loss: evolves
distilling correlation among co-occurring signs
to .

• Reconstruction loss：reinforces the above cross-
temporal context distillations.

• Cross-modality knowledge distillation:
encourages to learn the inter-gloss discrimination
indirectly.

 Cross-Temporal Context Aggregation (CTCA)
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 Generalizability of SPM and TAM
• "Quick Memory - Slow Forgetting" [1,2]

1. N. Tishby and N. Zaslavsky, "Deep learning and the information bottleneck principle," 2015 IEEE Information Theory Workshop (ITW), Jerusalem, Israel, 2015
2. Zifeng Wang, Shao-Lun Huang, Ercan Engin Kuruoglu, Ji-meng Sun, Xi Chen, and Yefeng Zheng. Pac-bayes information bottleneck. In ICLR, 2022.
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Methods
WER

Dev Test
SLT 24.6 24.5

CNN+LSTM+HMM 22.1 24.1
BN-TIN+Transf 22.7 23.9

V-L Mapper 21.9 22.5
SMKD 20.8 22.4
C2SLR 20.2 20.4

TLP 19.4 21.2
CTCA(Ours) 19.3 20.3

Methods
Dev Test

del/ins WER del/ins WER
LS-HAN 14.6/5.7 39.0 14.8/5.0 39.4

SLT(Gloss+Text) 10.3/4.4 33.1 9.6/4.1 32.0
FCN 12.8/4.0 33.2 12.6/3.7 32.5

BN-TIN+Transf 13.9/3.4 33.6 13.5/3.0 33.1
TIN+Iterative 12.8/3.3 32.8 12.5/2.7 32.4
CTCA(Ours) 9.2/2.5 31.3 8.1/2.3 29.4

Methods
Dev Test

del/ins WER del/ins WER

DNF 7.8/3.5 23.8 7.8/3.4 24.4

FCN - 23.7 - 23.9

VAC 7.9/2.5 21.2 8.4/2.6 22.3

CMA 7.3/2.7 21.3 7.3/2.4 21.9

SMKD 6.8/2.5 20.8 6.3/2.3 21.0

C2SLR - 20.5 - 20.4

TLP 6.3/2.8 19.7 6.1/2.9 20.8

RadialCTC 6.5/2.7 19.4 6.1/2.6 20.2

CTCA(Ours) 6.2/2.9 19.5 6.1/2.6 20.1

 Comparison with state-of-the-arts
Table 1. Comparison with state-of-the-art methods on the
RWTH-2014 dataset. (WER (%) the lower is the better).

Table 3. Comparison with state-of-the-art methods on
the CSL-Daily dataset. (WER (%) the lower is the better).

Table 2. Comparison with state-of-the-art methods on the
RWTH-2014T dataset. (WER (%) the lower is the better).



 Comparison with state-of-the-arts

• Better Generalizability, Smaller Parameter size
• Higher Performance, Faster Inference

CTCA



Methods Knowledge fusion Dev Test

SDPN

- 21.7 21.8
Vanilla distillation 21.6 21.6

Wasserstein 21.6 21.5
JMMD 21.3 21.3
CKD 21.3 21.5

CTCA (     ) 21.0 21.1
concatenation 22.7 23.6

point-wise addition 21.2 22.3
attention 22.2 22.6

Table 5. Ablation study on cross-context knowledge
distillation loss on the RWTH-2014.

Method Dev Test

Baseline - - - - 21.8 22.1
Vanilla - - - - 21.7 21.9
SDPN A  - - - 21.0 21.1
SDPN A-  - - - 21.3 21.5
SDPN B -  - - 20.8 20.7
SDPN C   - - 20.4 20.6
SDPN D    - 20.0 20.4
SDPN D-    - 20.2 20.6
SDPN E - - -  21.3 21.0
CTCA     19.5 20.1

 Ablation Study

ctd
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Table 6. Comparison of different knowledge fusion
schemes on the RWTH-2014. “Wasserstein” is the
Wasserstein distance.
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Method variants Dev Test

GTPM-branch

BLSTM 19.5 20.1
Dilated blocks 22.2 22.6
Transformer 28.7 28.9

Transformer+BLSTM 24.4 24.1

Method variants windows Dev Test

1D-TCN

F3-F3-F3 7*2 19.5 20.1
F3(1)-F3(2) 7*2 19.8 20.3

F5-F5 9*2 20.6 20.6
F5-F5-F5 13*2 19.9 20.6

F7-F7 13*2 20.1 20.3

 Ablation Study
Table 7. Performance comparison of local temporal
perception module with distinct temporal window
widths on the RWTH-2014. Ft and Ft(d) correspond
to the 1D temporal convolution layer with the kernel
of t and dilation of d, respectively.

Table 8. Comparison of CTCA with distinct global temporal
perception modules (GTPM) on the RWTH-2014.



Thanks for your listening!
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