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Streaming Video Model

* Traditionally, two separate kinds of video models are used to solve the sequence-based
tasks (e.g. action classification) and frame-based tasks (e.g. MOT).

* We propose a unified architecture, named streaming video model, for handling both types

of tasks.
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(a) Proposed streaming video model for both frame-based tasks and sequence-based tasks
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(b) Frame-based architecture uses an image model
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(c) Clip-based architecture uses a video model



Traditional Video Models
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Method: Streaming Video Model

* Key Innovation

* Two-stage design time
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Method: Streaming Video Model

* Key Innovation
* Two-stage design

* Temporal-aware Spatial
Streaming T2D Attention:
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72d: Spatiotemporal feature learning based on triple 2d decomposition. Zhao, et al



Experiments: Multiple Object Tracking

Exp 1. Comparison between streaming model and Exp 2: Influence of test-time memory length on
frame-based model on MOT17 MOT17
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Experiments: Video Action Recognition

Exp3: Comparison among streaming model, clip-based model, and frame-based model on action
recognition

Method GFLOPs K400 SSv2
Top-1 | Top-5 | Top-1 | Top-5
frame-based 282 84.2 96.7 68.3 91.6
clip-based 397 84.7 96.7 70.5 92.6
streaming 340 84.7 96.8 69.3 92.1

v’ Streaming video model shows competitive performance on the sequence-based tasks.



Conclusion

* we propose the idea of streaming video models that aim to unify the
treatment of both frame-based and sequence-based video understanding
tasks, which in the past were handled by separate models.

* We present an implementation named streaming video Transformer and
conduct comprehensive experiments on multiple benchmarks.

* Experimental results demonstrate our proposed model achieves remarkable
performance on both action recognition and multiple object tracking.

* To the best of our knowledge, our work Is the first deep learning architecture
that unifies video understanding tasks.
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Thank you for you listening. For more detalls, please visit:
https://arxiv.org/abs/2303.17228
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