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Motivation

 Huge performance gap between Unsupervised Domain Adaptive Semantic Segmentation
(UDASS) and Supervised Learning
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Motivation
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e  Prior Works ;
» Ignore source-target feature alignment using weak labels
» Lack of common framework for different weak labels
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Contributions

 Present common framework for WDASS task using image, point and coarse labels

» Two components :
- Construct better prototypes using weak labels

- Contrastive alignment of features using prototypes

 Bridge the gap between UDASS and supervised learning

» Notably with coarse annotation our framework outperforms supervised learning

 Show tradeoff between annotation cost vs performance for different weak labels

» Point label achieves better performance for low annotation budget

e Achieves new state-of-the-art on WDASS for different weak labels
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Experimental setting

 Standard UDASS setting
» GTAS5 to Cityscapes
» Synthia to Cityscapes

 Additional weak labels from Cityscapes dataset

» Image, point and coarse label

e Metric for evaluation

» Mean Intersection of Union (mloU) score

 Segmentation network
» DeeplLabv2 with ImageNet pre-training
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Results (Comparison with SoTA)
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» Our framework outperforms prior works
and baseline by significant difference

[1] Domain adaptive semantic segmentation with self-supervised depth estimation, ICCV 2021

[2] Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. CVPR 2021
[3] Bi-directional contrastive learning for domain adaptive semantic segmentation, ECCV 2022

[4] Domain adaptive semantic segmentation using weak labels, ECCV 2020

[5] Urban scene semantic segmentation with lowcost coarse annotation, WACV 2023
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» Our framework outperforms prior works
and baseline by significant difference

» Our framework bridges gap between
UDA and supervised learning.

[1] Domain adaptive semantic segmentation with self-supervised depth estimation, ICCV 2021

[2] Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. CVPR 2021
[3] Bi-directional contrastive learning for domain adaptive semantic segmentation, ECCV 2022

[4] Domain adaptive semantic segmentation using weak labels, ECCV 2020

[5] Urban scene semantic segmentation with lowcost coarse annotation, WACV 2023
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Results (Comparison with SoTA)
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» Our framework outperforms prior works
and baseline by significant difference

» Our framework bridges gap between
UDA and supervised learning.

» For GTAS to Cityscapes setting, coarse
labels outperforms supervised learning.

[1] Domain adaptive semantic segmentation with self-supervised depth estimation, ICCV 2021

[2] Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. CVPR 2021
[3] Bi-directional contrastive learning for domain adaptive semantic segmentation, ECCV 2022

[4] Domain adaptive semantic segmentation using weak labels, ECCV 2020

[5] Urban scene semantic segmentation with lowcost coarse annotation, WACV 2023
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Results (Cost vs performance)
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