

Weakly-Supervised Domain Adaptive Semantic Segmentation with Prototypical Contrastive Learning

Anurag Das

Yongqin Xian*

Dengxin Dai

Bernt Schiele

Max Planck Institute for Informatics, Saarland Informatics Campus

*ETH Zürich

 Huge performance gap between Unsupervised Domain Adaptive Semantic Segmentation (UDASS) and Supervised Learning

Huge performance gap of Unsupervised Domain Adaptive Semantic Segmentation (UDASS)
and Supervised Learning

• Idea: Use additional cheap weak labels from real domain

Road, Sidewalk, building, traffic sign, car, rider, sky, vegetation 30 sec

67

5000

Ours-Coarse

Supervised

Huge performance gap of Unsupervised Domain Adaptive Semantic Segmentation (UDASS)
and Supervised Learning

Idea: Use additional cheap weak labels from real domain

Road, Sidewalk, building, traffic sign, car, rider, sky, vegetation

30 sec

7 min

 Task: Weakly Supervised Domain Adaptive Semantic Segmentation (WDASS)

Huge performance gap of Unsupervised Domain Adaptive Semantic Segmentation (UDASS) and Supervised Learning

Idea: Use additional cheap weak labels from real domain

Road, Sidewalk, building, traffic sign, car, rider, sky, vegetation 30 sec

7 min

9 performance Ours-Image Oolπ 59 61 ProDA DASS CorDA

67

Task: Weakly Supervised Domain Adaptive Semantic Segmentation (WDASS)

- Prior Works:
 - Ignore source-target feature alignment using weak labels
 - Lack of common framework for different weak labels

cost in annotation hrs

5000

Ours-Coarse

Supervised

Ours-Point

400

Contributions

- Present common framework for WDASS task using image, point and coarse labels
 - Two components :
 - Construct better prototypes using weak labels
 - Contrastive alignment of features using prototypes
- Bridge the gap between UDASS and supervised learning
 - Notably with coarse annotation our framework outperforms supervised learning
- Show tradeoff between annotation cost vs performance for different weak labels
 - Point label achieves better performance for low annotation budget
- Achieves new state-of-the-art on WDASS for different weak labels

Experimental setting

- Standard UDASS setting
 - GTA5 to Cityscapes
 - Synthia to Cityscapes
- Additional weak labels from Cityscapes dataset
 - image, point and coarse label
- Metric for evaluation
 - Mean Intersection of Union (mloU) score
- Segmentation network
 - DeepLabv2 with ImageNet pre-training

Results (Comparison with SoTA)

	GTA5 → Cityscapes			$Synthia \rightarrow Cityscapes$		
	Method	mIoU	gap	mIoU†	mIoU*	gap
	Source	36.6	+30.8	34.9	40.3	+33.6
UDA	CorDA _[1]	56.6	+10.8	55.0	62.8	+11.1
	ProDA[2]	57.5	+9.9	55.5	62.0	+11.9
	DASS [3]	57.1	+10.3	55.6	62.9	+11.0
image	baseline	51.4	+16.0	36.1	39.1	+34.8
	WeakSegDA [4]	53.0	+14.4	50.6	58.5	+15.4
	Ours	61.5	+5.9	61.3	63.9	+10.0
point	baseline	54.9	+12.9	48.5	53.3	+20.6
	WeakSegDA _[4]	56.4	+11.0	57.2	63.7	+10.2
	Ours	64.7	+2.7	62.8	68.7	+5.2
coarse	baseline	60.8	+6.6	54.6	59.1	+14.8
	Coarse-to-fine [5]	66.7	+0.7	61.6	67.2	+6.7
	Ours	69.1	-1.7	66.0	71.0	+2.9
	Supervised	67.4	0.0	68.8	73.9	0.0

 Our framework outperforms prior works and baseline by significant difference

^[1] Domain adaptive semantic segmentation with self-supervised depth estimation, ICCV 2021

^[2] Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. CVPR 2021

^[3] Bi-directional contrastive learning for domain adaptive semantic segmentation, ECCV 2022

^[4] Domain adaptive semantic segmentation using weak labels, ECCV 2020

^[5] Urban scene semantic segmentation with lowcost coarse annotation, WACV 2023

Results (Comparison with SoTA)

GTA5 → Cityscapes			Synthia → Cityscapes			
	Method	mIoU	gap	mIoU†	mIoU*	gap
	Source	36.6	+30.8	34.9	40.3	+33.6
UDA	CorDA[1]	56.6	+10.8	55.0	62.8	+11.1
	ProDA [2]	57.5	+9.9	55.5	62.0	+11.9
	DASS [3]	57.1	+10.3	55.6	62.9	+11.0
image	baseline	51.4	+16.0	36.1	39.1	+34.8
	WeakSegDA [4]	53.0	+14.4	50.6	58.5	+15.4
	Ours	61.5	+5.9	61.3	63.9	+10.0
point	baseline	54.9	+12.9	48.5	53.3	+20.6
	WeakSegDA [4]	56.4	+11.0	57.2	63.7	+10.2
	Ours	64.7	+2.7	62.8	68.7	+5.2
coarse	baseline	60.8	+6.6	54.6	59.1	+14.8
	Coarse-to-fine [5]	66.7	+0.7	61.6	67.2	+6.7
	Ours	69.1	-1.7	66.0	71.0	+2.9
	Supervised	67.4	0.0	68.8	73.9	0.0

- Our framework outperforms prior works and baseline by significant difference
- Our framework bridges gap between UDA and supervised learning.

^[1] Domain adaptive semantic segmentation with self-supervised depth estimation, ICCV 2021

^[2] Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. CVPR 2021

^[3] Bi-directional contrastive learning for domain adaptive semantic segmentation, ECCV 2022

^[4] Domain adaptive semantic segmentation using weak labels, ECCV 2020

^[5] Urban scene semantic segmentation with lowcost coarse annotation, WACV 2023

Results (Comparison with SoTA)

	GTA5 → Cityscapes			Synthia → Cityscapes		
	Method	mIoU	gap	mIoU†	mIoU*	gap
	Source	36.6	+30.8	34.9	40.3	+33.6
UDA	CorDA[1]	56.6	+10.8	55.0	62.8	+11.1
	ProDA [2]	57.5	+9.9	55.5	62.0	+11.9
	DASS [3]	57.1	+10.3	55.6	62.9	+11.0
image	baseline	51.4	+16.0	36.1	39.1	+34.8
	WeakSegDA [4]	53.0	+14.4	50.6	58.5	+15.4
	Ours	61.5	+5.9	61.3	63.9	+10.0
point	baseline	54.9	+12.9	48.5	53.3	+20.6
	WeakSegDA [4]	56.4	+11.0	57.2	63.7	+10.2
_	Ours	64.7	+2.7	62.8	68.7	+5.2
coarse	baseline	60.8	+6.6	54.6	59.1	+14.8
	Coarse-to-fine [5]	66.7	+0.7	61.6	67.2	+6.7
	Ours	69.1	-1.7	66.0	71.0	+2.9
	Supervised	67.4	0.0	68.8	73.9	0.0

- Our framework outperforms prior works and baseline by significant difference
- Our framework bridges gap between UDA and supervised learning.
- For GTA5 to Cityscapes setting, coarse labels outperforms supervised learning.

^[1] Domain adaptive semantic segmentation with self-supervised depth estimation, ICCV 2021

^[2] Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. CVPR 2021

^[3] Bi-directional contrastive learning for domain adaptive semantic segmentation, ECCV 2022

^[4] Domain adaptive semantic segmentation using weak labels, ECCV 2020

^[5] Urban scene semantic segmentation with lowcost coarse annotation, WACV 2023

Results (Cost vs performance)

	Cost / image
Image label	30 sec
Point label	45 sec
Coarse label	7 min
Fine label	90 min

- Our framework using weak labels performs better than supervised learning and semi-supervised domain adaptation
- Within different weak labels, point labels gives best tradeoff for cost vs performance labels outperforms supervised learning.

- Poster Session: WED-PM
- Poster Id: 293
- Date and Time: June 21, 4:30 pm 6:00 pm

