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Introduction

Estimating the 3D human pose from a 2D pose sequence is now 
dominant in the literature (referred to as 2D-to-3D lifting methods).
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Research Problems

State-of-the-art methods suffer from two limitations:

• Poor efficiency in temporal modeling for long joint sequences 

• Vulnerable to the noise brought by imperfect 2D joint detection

Applying dense temporal modeling (e.g., using self-attention) for 
all video frames is computationally expensive

Frame-to-frame interactions unexpectedly propagate and amplify the 
noise in each video frame



Take-away Message:

We find the frequency-domain representation of input 

sequences a surprising fit to simultaneously solve these two 

practical problems.



Motivation
We show a sample of joint trajectory and its reconstructions with a few 
low-frequency Discrete Cosine Transform (DCT) coefficients.

Reconstructed curves 
are smoother!

Reconstruction with 
only 3 DCT coefficients

(orange curve)



Motivation
are enough to encode global human dynamics
filter out noise in the joint trajectory (“smoother”)

Low-frequency coefficients

Reconstructed curves 
are smoother!

Reconstruction with 
only 3 DCT coefficients

(orange curve)



The Proposed Method



PoseFormer
We build our method on PoseFormer(V1).



Here is an overview:
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expensive self-attention to 

all frames
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Zheng et al. 3d human pose estimation with spatial and temporal transformers. In ICCV, 2021.



The Proposed Method

2D pose sequence (e.g., 9 frames)
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Compared  to PoseformerV1 
the token number for 

transformers is reduced

Zheng et al. 3d human pose estimation with spatial and temporal transformers. In ICCV, 2021.



Properties

• Given a long sequence, we only use a few central frames and its low-
frequency coefficients, thus reducing the effective sequence length.

• The frame number and coefficient number can be arbitrarily
specified for a flexible speed-accuracy trade-off.

• Low-frequency DCT coefficients filter out noise in the input 2D pose 
sequence and therefore improve robustness.



Comparisons with
State-of-the-art Methods



Comparisons on Human3.6M

Superior speed-accuracy 
trade-off than other 

transformer-based methods

*RF denotes Receptive Field, please refer to the paper to see more details.



Comparisons on Human3.6M

We investigate the robustness of models by adding Gaussian noise 

to the ground-truth 2D joint detection of standard deviation sigma, 

and to show their performance drop as sigma increases.



Comparisons on Human3.6M

PoseFormerV2 suffers from 
less performance drop while 

being more efficient.

*the size of markers denotes computational cost



Comparisons on MPI-INF-3DHP

PoseFormerV2 achieves the state-of-the-art performance on MPI-INF-3DHP



Qualitative Results 



(a) (b)

(c) (d)

Challenging in-the-wild images
Missed Joint

Missed Joint Switched Joint

PoseFormerV2 infers correct 3D pose with unreliable 2D joint detection



We add Gaussian noise to a randomly-selected 2D joint to compare the robustness of models
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Input MHFormer PoseFormerV2PoseFormerV1 Input MHFormer PoseFormerV2PoseFormerV1

PoseFormerV2 obtains reliable 3D pose with even highly deviated 2D joint detection



We add Gaussian noise to all 2D joints and PoseFormerV2 shows a surprisingly good temporal consistency.
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Thanks for Watching!

• Project Page 
• (code & video): 
• qitaozhao.github.io/PoseFormerV2


